[1]
E. Pardoux, S. Peng: Adapted Solution of Backward Stochastic Differential Equations. Systems Control Lett. (1990), 14, 51-61.
DOI: 10.1016/0167-6911(90)90082-6
Google Scholar
[2]
J.P. Lepeltier, J. San Martin: Backward Stochastic Differential Equations with Continuous Coeffcient. Statist. Probab. Lett. (1997), 32(4), 425-430.
DOI: 10.1016/s0167-7152(96)00103-4
Google Scholar
[3]
M. El Otmani: BSDE Driven by a Simple Lévy Process with Continuous Coeffcient. Statistics and Probability Letters. (2008), 78, 1259-1265.
DOI: 10.1016/j.spl.2007.11.021
Google Scholar
[4]
S. Peng: A Generalized Dynamic Programming Principle and Hamilton-Jacobi-Bellman Equation. Stochastics Stochastic Rep. (1992), 38(2), 119-134.
DOI: 10.1080/17442509208833749
Google Scholar
[5]
N. El Karoui, S. Peng, and M.C. Quenz: Backward Stochastic Differential Equations in Finance. Math. Finance (1997), 7, 1-71.
DOI: 10.1111/1467-9965.00022
Google Scholar
[6]
J. Liu, J. Ren: Comparison Theorem for Solutions of Backward Stochastic Differential Equations with Continuous Coeffcient. Statist. Probab. lett. (2002), 56, 93-100.
DOI: 10.1016/s0167-7152(01)00178-x
Google Scholar
[7]
G. Jia, S. Peng: On the Set of Solutions of a BSDE with Continuous Coeffcient. C. R. Acad. Sci. Paris, Ser. I, (2007), 344, 395-397.
Google Scholar
[8]
H. Tang: Stochastic linear quadratic control problem with Lévy process and BSDEs with markov chains. Ph. D Thesis. Shandong University, China. (2008).
Google Scholar