Generalized Refinable Function Vectors with Hermite Interpolating Property

Article Preview

Abstract:

Wavelet analysis has many applications in scientific areas such as computer graphics, image processing, numerical algorithms and signal denoising. In general, a wavelet is derived from a refinable function vector via a multiresolution analysis. In this paper, we presented a novel notion of generalized Hermite interpolating refinable function vector. In terms of its mask, several properties (such as interpolation property, symmetry property and approximation property) with respect to generalized Hermite interpolating refinable function vector. We shall present an example at the end of this paper.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

372-376

Citation:

Online since:

February 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] CHENG Li-bo, SUN Jia-ning, LIANG Xue-zhang, WEN Xue-bing. Refinable Function Vectors with Hermite Interpolating Property. Journal of Jilin University Science Edition. Vol. 47 (2009), 1155-1159.

Google Scholar

[2] Koch K. Interpolating Scaling Vectors. Int J Wavelets Multiresolut Info Process. Vol. 3 (2005), 389-416.

DOI: 10.1142/s0219691305000919

Google Scholar

[3] ZHOU Ding-xuan. Interpolatory Orthogonal Multiwavelets and Refinable Functions. IEEE Trans on Signal Process , 2002, 50 (3): 520-527.

DOI: 10.1109/78.984728

Google Scholar

[4] Selesnick I W. Interpolating Multiwavelet Bases and the Sampling Theorem. IEEE Trans on Signal Process , 1999, 47 (6): 1615-1621.

DOI: 10.1109/78.765131

Google Scholar

[5] Conti C, Cotronei M, Sauer T. Full Rank Interpolatory Subdivision Schemes: Kronecker, Filters and Multiresolution. J Comput Appl Math, Vol. 225 (2009), 219-239.

DOI: 10.1016/j.cam.2009.02.016

Google Scholar

[6] HAN Bin, Kwon S G, ZHUANG Xiao-sheng. Generalized Interpolating Refinable Function Vectors. J Comput Appl Math, Vol. 227 (2009), 254-270.

DOI: 10.1016/j.cam.2008.03.014

Google Scholar

[7] HAN Bin. Vector Cascade Algorithms and Refinable Function Vectors in Sobolev Spaces. J Approx Theory , Vol. 124 (2003), 44-88.

DOI: 10.1016/s0021-9045(03)00120-5

Google Scholar

[8] JIANG Qing-tang, Oswald P, Riemenschneider S D. -Subdivision Schemes: Maximal Sum Rule Orders. Constru Approx , Vol. 19 (2003), 437-463.

DOI: 10.1007/s00365-002-0521-2

Google Scholar

[9] Koch K. Multivariate Orthonormal Interpolating Scaling Vectors. Appl Comput Harmon Anal, Vol. 22 (2007), 198-216.

DOI: 10.1016/j.acha.2006.06.002

Google Scholar