Hermitian Solutions to a Quaternion Matrix Equation

Article Preview

Abstract:

In this paper, we consider Hermitian and skew-Hermitian solutions to a certain matrix equation over quaternion algebra H. Necessary and sufficient conditions are obtained for the quaternion matrix equation to have Hermitian and skew-Hermitian solutions, and the expressions of such solutions are also given. As an application, the common skew-Hermitian g-inverse of quaternion matrix A and B is considered.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

391-395

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] C.G. Khatri, S.K. Mitra: SIAM J. Appl. Math. Vol. 31 (1976), p.579.

Google Scholar

[2] J.K. Baksalary: Linear and Multi-linear Algebra, Vol. 16 (1984), p.133.

Google Scholar

[3] H. Dai: Linear Algebra Appl. Vol. 131 (1990), p.1.

Google Scholar

[4] J. Groß: Bull. Malaysian Math. Sci. Soc. Vol. 21 (1998), p.57.

Google Scholar

[5] H. Dai, P. Lancaster: Linear Algebra Appl. Vol. 246 (1996), p.31.

Google Scholar

[6] J. Groß: Linear Algebra Appl. Vol. 321 (2000), p.123.

Google Scholar

[7] M. Wei, Q. Wang: Int. J. Comput. Math. Vol. 84 (2007), p.945.

Google Scholar

[8] X. Zhang, M. Cheng: Linear Algebra Appl. Vol. 370 (2003), p.163.

Google Scholar

[9] Y. Liu, Y. Tian, Y. Takane: Linear Algebra Appl. Vol. 431 (2009), p.2359.

Google Scholar

[10] S.L. Adler: Quaternionic Quantum Mechanics and Quantum Fields (Oxford University Press, UK 1995).

Google Scholar

[11] Q.W. Wang: Comput. Math. Appl. Vol. 49 (2005), p.665.

Google Scholar

[12] Q.W. Wang: Linear Algebra Appl. Vol. 384 (2004), p.43.

Google Scholar

[13] Q.W. Wang, C.K. Li: Linear Algebra Appl. Vol. 430 (2009), p.1626.

Google Scholar