Convergence Theorems for a Finite Family of Strictly Asymptotically Pseudocontractive Mappings in Q-Uniformly Smooth Banach Spaces

Article Preview

Abstract:

Let E be a real q-uniformly smooth and uniformly convex Banach space and K a nonempty closed convex subset of E. Let Ti : K ! K, i = 1; 2; : : : ;N be ki-strictly asymptotically pseudocon- tractive mappings with \N i=1F (Ti) 6= ;, where F(Ti) = fx 2 K : Tix = xg. Let fxng be the sequence generated by xn+1 = (1 ¡ ®n)xn + ®nTn [n]xn; where f®ng is a sequence in [0,1] satisfying certain conditions and Tn [n] = Ti n; i = n(modN). Weak and strong convergence theorems for the iterative approximation of common ¯xed points of the family fTigN i=1 are proved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

432-436

Citation:

Online since:

February 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.K. Xu: Inequalities in Banach spaces with applications, Nonlinear Anal., 1127-1138 (1991), TMA16(2).

Google Scholar

[2] G.L. Acedo, H.K. Xu: Iterative methods for strict pseudocontractions in Hilbert spaces, Nonlinear Anal., 2258-2271 (2007), TMA67(7).

DOI: 10.1016/j.na.2006.08.036

Google Scholar

[3] M.O. Osilike, Y. Shehu: Cyclic algorithm for common fixed points of finite family of strictly pseudocontractive mappings of Browder-Petryshyn type, Nonlinear Analysis, 3575-3583 (2009), 70.

DOI: 10.1016/j.na.2008.07.015

Google Scholar

[4] H. Zhang, Y.F. Su: Strong convergence theorems for strict pseudo-contractions in q-uniformly smooth Banach spaces, Nonlinear Anal., 3236-C3242 (2009), 70.

DOI: 10.1016/j.na.2008.04.030

Google Scholar

[5] H. Zhang, Y.F. Su: Convergence theorems for strict pseudo-contractions in q-uniformly smooth Banach spaces, Nonlinear Anal., 4572-4580 (2009), 71.

DOI: 10.1016/j.na.2009.03.033

Google Scholar

[6] M.O. Osilike, Y. Shehu: Explicit averaging cyclic algorithm for common fixed points of a finite family of asymptotically strictly pseudocontractive maps in Banach spaces, Nonlinear Anal., 1502-1510 (2009), 57.

DOI: 10.1016/j.camwa.2009.01.022

Google Scholar

[7] Z.B. Xu, G.F. Roach: Characteristic inequalities of uniformly smooth Banach spaces, J. Math. Anal. Appl., 189-210 (1991), 157.

DOI: 10.1016/0022-247x(91)90144-o

Google Scholar

[8] M.O. Osilike, S.C. Aniagbosor and B.G. Akuchu: Fixed points of asymptotically demicontractive mappings in arbitrary Banach spaces, Panamer. Math. J., 77-88 (2002), 12(2).

Google Scholar

[9] M.O. Osilike, A. Udomene, D.I. Igbokwe and B.G. Akuchu: Demiclosedness principle and convergence theorems for k-strictly asymptotically pseudocontractive maps, J. Math. Anal. Appl., 1334-1345 (2007), 326.

DOI: 10.1016/j.jmaa.2005.12.052

Google Scholar

[10] R.E. Bruck: A smple proof of the mean ergodic theorem for nonlinear contraction in Banach spaces, Isreal J. Math., 107-116 (1979), 32(2-3).

DOI: 10.1007/bf02764907

Google Scholar