[1]
W.L. Oberkampf, et al. Challenge problems: uncertainty in system response given uncertain parameters. Reliability Engineering & System Safety 85. 1 (2004): 11-19.
DOI: 10.1016/j.ress.2004.03.002
Google Scholar
[2]
J.C. Helton. Uncertainty and sensitivity analysis in the presence of stochastic and subjective uncertainty. Journal of Statistical Computation and Simulation 57. 1-4 (1997): 3-76.
DOI: 10.1080/00949659708811803
Google Scholar
[3]
Wei Gao. Random seismic response analysis of truss structures with uncertain parameters., Engineering structures 29. 7 (2007): 1487-1498.
DOI: 10.1016/j.engstruct.2006.08.025
Google Scholar
[4]
K. Sentz, and S. Ferson. Combination of evidence in Dempster-Shafer theory. Vol. 4015. Albuquerque, New Mexico: Sandia National Laboratories, (2002).
DOI: 10.2172/800792
Google Scholar
[5]
G.C. Marano, et al. A fuzzy random approach of stochastic seismic response spectrum analysis. Engineering Structures 32. 12 (2010): 3879-3887.
DOI: 10.1016/j.engstruct.2010.09.001
Google Scholar
[6]
M. Modarreszadeh. Dynamic analysis of structures with interval uncertainty. Diss. Case Western Reserve University, (2005).
Google Scholar
[7]
Zhiping Qiu, and Ni Zao. Interval modal superposition method for impulsive response of structures with uncertain-but-bounded external loads. Applied Mathematical Modelling 35. 3 (2011): 1538-1550.
DOI: 10.1016/j.apm.2010.09.030
Google Scholar
[8]
Y.C. Bai, et al. Evidence-theory-based structural static and dynamic response analysis under epistemic uncertainties. Finite Elements in Analysis and Design 68 (2013): 52-62.
DOI: 10.1016/j.finel.2013.01.007
Google Scholar
[9]
A.P. Dempster, Upper and lower probabilities induced by a multiplicand mapping, Annals of mathematical statistics, (1967), 38: 325-339.
DOI: 10.1214/aoms/1177698950
Google Scholar
[10]
G.A. Shafer. Mathematical theory of evidence. Vol. 1. Princeton: Princeton university press, (1976).
Google Scholar
[11]
H.R. Bae, R.V. Grandhi, and R.A. Canfield. An approximation approach for uncertainty quantification using evidence theory. Reliability Engineering & System Safety 86. 3 (2004): 215-225.
DOI: 10.1016/j.ress.2004.01.011
Google Scholar
[12]
H.R. Bae, R.V. Grandhi, and R.A. Canfield. Canfield. Epistemic uncertainty quantification techniques including evidence theory for large-scale structures. Computers & Structures 82. 13 (2004): 1101-1112.
DOI: 10.1016/j.compstruc.2004.03.014
Google Scholar
[13]
C. Jiang, et al. A novel evidence-theory-based reliability analysis method for structures with epistemic uncertainty. Computers & Structures 129 (2013): 1-12.
DOI: 10.1016/j.compstruc.2013.08.007
Google Scholar
[14]
Z.P. Mourelatos, and Jun Zhou. A design optimization method using evidence theory. Journal of mechanical design 128 (2006): 901.
DOI: 10.1115/1.2204970
Google Scholar
[15]
R. Storn, and K. Price. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 11. 4 (1997): 341-359.
Google Scholar