[1]
Ozbakkaloglu, T., Lim, J. C., and Vincent, T. (2013). FRP-confined concrete in circular sections: Review and assessment of the stress-strain models,. Eng. Struct., 49: 1068-1088.
DOI: 10.1016/j.engstruct.2012.06.010
Google Scholar
[2]
Ozbakkaloglu, T. (2013). Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters,. Eng. Struct., 51: 151-161.
DOI: 10.1016/j.engstruct.2013.01.017
Google Scholar
[3]
Ozbakkaloglu, T. (2013). Concrete-filled FRP Tubes: Manufacture and Testing of New Forms Designed for Improved Performance., J. Compos. for Constr., ASCE, 17(2): 280 -291.
DOI: 10.1061/(asce)cc.1943-5614.0000334
Google Scholar
[4]
Ozbakkaloglu, T. (2013). Axial Compressive Behavior of Square and Rectangular High-Strength Concrete-Filled FRP Tubes., J. Compos. for Constr., ASCE, 17(1), 151-161.
DOI: 10.1061/(asce)cc.1943-5614.0000321
Google Scholar
[5]
Ozbakkaloglu, T. (2013). Behavior of Square and Rectangular Ultra High-Strength Concrete-Filled FRP Tubes under Axial Compression., Composites Part B. 54: 97-111.
DOI: 10.1016/j.compositesb.2013.05.007
Google Scholar
[6]
Ozbakkaloglu, T., and Vincent, T. (2013). Axial compressive behavior of circular high-strength concrete-filled FRP tubes,. ASCE, J. Compos. Constr., 10. 1061/(ASCE)CC. 1943-5614. 0000410.
DOI: 10.1061/(asce)cc.1943-5614.0000410
Google Scholar
[7]
Vincent, T., and Ozbakkaloglu, T. (2013). Influence of fiber orientation and specimen end condition on axial compressive behavior of FRP-confined concrete., Construction and Building Materials. 47: 814-826.
DOI: 10.1016/j.conbuildmat.2013.05.085
Google Scholar
[8]
Ozbakkaloglu, T., and Oehlers, D. J. (2008). Concrete-filled Square and Rectangular FRP Tubes under Axial Compression., J. Compos. for Constr., ASCE, Vol. 12, No. 4, pp.469-477.
DOI: 10.1061/(asce)1090-0268(2008)12:4(469)
Google Scholar
[9]
Ozbakkaloglu, T., and Oehlers, D. J. (2008). Manufacture and Testing of a Novel FRP Tube Confinement System., Engineering Structures, Vol. 30, No. 9, pp.2448-2459.
DOI: 10.1016/j.engstruct.2008.01.014
Google Scholar
[10]
Idris, Y., and Ozbakkaloglu, T. (2013). Seismic behavior of high-strength concrete-filled FRP tube columns., J. Compos. for Constr., ASCE. 10. 1061/(ASCE)CC. 1943-5614. 0000388.
DOI: 10.1061/(asce)cc.1943-5614.0000388
Google Scholar
[11]
Ozbakkaloglu, T., and Akin, E. (2012). Behavior of FRP-Confined Normal- and High-Strength Concrete under Cyclic Axial Compression., J. Compos. for Constr., ASCE, 16(4), 451-463.
DOI: 10.1061/(asce)cc.1943-5614.0000273
Google Scholar
[12]
Vincent, T., and Ozbakkaloglu, T. (2013). Influence of concrete strength and confinement method on axial compressive behavior of FRP-confined high- and ultra high-strength concrete,. Composites Part B, 50: 413-428.
DOI: 10.1016/j.compositesb.2013.02.017
Google Scholar
[13]
Ozbakkaloglu, T., and Saatcioglu, M. (2007). Seismic Performance of Square High-Strength Concrete Columns in FRP Stay-in-Place Formwork., Journal of Structural Engineering, ASCE, Vol. 133, No. 1, pp.44-56.
DOI: 10.1061/(asce)0733-9445(2007)133:1(44)
Google Scholar
[14]
Ozbakkaloglu, T., and Saatcioglu, M. (2006). Seismic Behavior of High-Strength Concrete Columns Confined by Fiber Reinforced Polymer Tubes., J. Compos. for Constr., ASCE, Vol. 10, No. 6, pp.538-549.
DOI: 10.1061/(asce)1090-0268(2006)10:6(538)
Google Scholar
[15]
Lim, J. C., and Ozbakkaloglu, T. (2013). Confinement model for FRP-confined high-strength concrete., J. Compos. for Constr., ASCE. 10. 1061/(ASCE)CC. 1943-5614. 0000376.
DOI: 10.1061/(asce)cc.1943-5614.0000376
Google Scholar
[16]
Ozbakkaloglu, T., and Lim, J. C. (2013). Axial Compressive Behavior of FRP-Confined Concrete: Experimental Test Database and a New Design-Oriented Model., Composites Part B. 55: 607-634.
DOI: 10.1016/j.compositesb.2013.07.025
Google Scholar
[17]
Hadi, M.N.S., and Li, J. (2004). External reinforcement of high strength concrete columns,. J. Compos. Struct., 65: 279 - 287.
DOI: 10.1016/j.compstruct.2003.11.003
Google Scholar
[18]
Yazici, V., and Hadi, M. (2009). Behaviour of FRP Wrapped Circular Concrete Columns,. in Proc. 9th Int. Symp. On Fiber Reinforced Polymer Reinforcement for Concrete Structures. Sydney, Australia: Univ. of Adelaide.
DOI: 10.1201/9780203859926.ch33
Google Scholar
[19]
Rousakis, T., and Tepfers, R. (2001).
Google Scholar