A New Floor Field Model for Pedestrian Evacuation Considering Local Density

Article Preview

Abstract:

The behavior of pedestrians around the corner of a room or a corridor is one of the most important features in pedestrian evacuating dynamics. In order to study this in detail, an existing potential field model is modified to capture the pedestrian dynamic around corner by introducing a local density parameter. The local density parameter of a cell is defined as the pedestrian occupancy of the surrounding eight neighbors. Simulations are carried out to study pedestrian evacuation in rooms with corners formed by internal obstacles and walls. The simulation results show that the new model can reproduce the empirical pedestrian dynamics around corner. Pedestrians prefer to walk to lower pedestrian density area although the route may be a little longer. It is also shown that the total evacuation time could be reduced for the evacuation corridor is fully utilized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1172-1178

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Helbing and P. Molnar, Phys. Rev. E, 4282 (1995).

Google Scholar

[2] D. Helbing, I. Farkas and T. Vicsek, Nature 407 487 (2000).

Google Scholar

[3] W.G. Song, X. Xu, B.H. Wang and S.J. Ni, Physica A 363 492 (2006).

Google Scholar

[4] V.J. Blue, J.L. Adler, Trans. Res. Part B 35, 293(2001).

Google Scholar

[5] J. Li, L.Z. Yang and D.L. Zhao, Physica A 354, 619(2005).

Google Scholar

[6] C. Burstedde, K. Klauck, A. Schadschneider, and J. Zittartz, Physica A 295 507 (2001).

Google Scholar

[7] A. Kirchner and A. Schadschneider, Physica A 312 260 (2002).

Google Scholar

[8] H.J. Huang and R.Y. Guo, Phys. Rev. E 78 021131 (2008).

Google Scholar

[9] R.Y. Guo and H.J. Huang, Chin. Phys. B 19 030501 (2010).

Google Scholar

[10] R.Y. Guo and H.J. Huang, J. Stat. Mech. P04018 (2011).

Google Scholar

[11] A. Kirchner, K. Nishinari and A. Schadschneider. Phys. Rev. E 67 056122 (2003).

Google Scholar

[12] D. Yanagisawa, A. Kimura and A. Tomoeda et al. Phys. Rev. E 80 036110 (2009).

Google Scholar

[13] C.M. Henein and T. White, Physica A 373 694(2007).

Google Scholar

[14] D. Yanagisawa and K. Nishinari. Phys. Rev. E 76 061117(2007).

Google Scholar

[15] H. Zhao and Z.Y. Gao, J. Phys. A: Math. Theor. 43 105001(2010).

Google Scholar

[16] P. Zhang, X.X. Jian, S.C. Wong and K. Choi, Phys. Rev. E 85 021119 (2012).

Google Scholar

[17] D. Helbing, M. Isobe, T. Nagatani and K. Takimoto, Phys. Rev. E 67 067101(2003).

Google Scholar

[18] M. Isobe, T. Adachi, T. Nagatani, Physica A 336 638(2004).

Google Scholar

[19] D. Helbing, A. Johansson and H.Z. Al-Abideen, Phys. Rev. E 75 046109(2007).

Google Scholar

[20] J. Zhang, W.G. Song and X. Xu, Physica A 387 5901(2008).

Google Scholar

[21] S.B. Liu, L.Z. Yang, T.Y. Fang and J. Li, Physica A 388 1921(2009).

Google Scholar