The Experimental and Simulation Analysis of Steel Piston Temperature Field and Deformation Based on Finite Element Method

Article Preview

Abstract:

The traditional aluminum piston, the can not meet the engine development to the high power density direction, so the higher strength steel piston designed. The temperature filed and deformation was calculated and analyzed by finite element method with finite element software MSC.NASTRAN. The results can provide theoretical foundation for the promotion of the all-steel piston.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

388-392

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J. Schmidt, K.D. Moergenthaler, K. -P. Brehler and J. Arndt. High-strength graphites for carbon piston applications[J]. Carbon, Volume 36, Issues 7-8, 1998, Pages 1079-1084.

DOI: 10.1016/s0008-6223(98)00081-5

Google Scholar

[2] F.S. Silva. Fatigue on engine pistons—A compendium of case studies[J]. Engineering Failure Analysis, Volume 13, Issue 3, April 2006, Pages 480-492.

DOI: 10.1016/j.engfailanal.2004.12.023

Google Scholar

[3] Peter Kemnitz, Olaf Maier, Ralph Klein. Monotherm,a New Forged Steel Piston Design for Highly Loaded Diesel Engines, SAE Paper 2000-01-0924.

DOI: 10.4271/2000-01-0924

Google Scholar

[4] Manuel Valdés, Jesús Casanova and Antonio Rovira, et. Design of Carbon Pistons Using Transient Heat Transfer and Stress Analyses, SAE Paper 2001-01-3217.

DOI: 10.4271/2001-01-3217

Google Scholar

[5] Michael Winship, William J. Morgan. Piston Design for the Nineties, SAE Paper 930273.

Google Scholar

[6] Sebastian Thalmair, Jan Thiele and Andreas Fischersworring-Bunk, et. Cylinder Heads for High Power Gasoline Engines Thermomechanical Fatigue Life Prediction, SAE Paper 2006-01-0541.

DOI: 10.4271/2006-01-0541

Google Scholar

[7] Robert Minichmayr, Martin Riedler, Gerhard Winter, et. Thermo mechanical fatigue life assessment of aluminium components using the damage rate model of Sehitoglu[J]. International Journal of Fatigue, Volume 30, Issue 2, February 2008, Pages 298-304.

DOI: 10.1016/j.ijfatigue.2007.01.054

Google Scholar

[8] J.J. Thomas, L. Verger, A. Bignonnet, et. Thermomecanical Design in the Automotive Industry, SAE Paper 2002-01-0659.

DOI: 10.4271/2002-01-0659

Google Scholar

[9] C.D. Rakopoulos, D.C. Rakopoulos, G.C. Mavropoulos, et. Experimental and theoretical study of the short term response temperature transients in the cylinder walls of a diesel engine at various operating conditions[J]. Applied Thermal Engineering, Volume 24, Issues 5-6, April 2004, Pages 679-702.

DOI: 10.1016/j.applthermaleng.2003.11.002

Google Scholar

[10] H.A. Richard, M. Sander, M. Fulland, et. Development of fatigue crack growth in real structures[J]. Engineering Fracture Mechanics, Volume 75, Issues 3-4, February-March 2008, Pages 331-340.

DOI: 10.1016/j.engfracmech.2007.01.017

Google Scholar

[11] M. Haiba, D.C. Barton, P.C. Brooks, et. Review of life assessment techniques applied to dynamically loaded automotive components[J]. Computers & Structures, Volume 80, Issues 5-6, March 2002, Pages 481-494.

DOI: 10.1016/s0045-7949(02)00022-6

Google Scholar

[12] Abolhassan Khosrovaneh, Ravi Pattu and William Schnaidt. Discussion of Fatigue Analysis Techniques in Automotive Applications, SAE Paper 2004-01-0626.

DOI: 10.4271/2004-01-0626

Google Scholar

[13] Luc Rémy, Adil Alam, Nader Haddar, et. Growth of small cracks and prediction of lifetime in high-temperature alloys[J]. Materials Science and Engineering: A, Volumes 468-470, 15 November 2007, Pages 40-50.

DOI: 10.1016/j.msea.2006.08.133

Google Scholar

[14] M.L. Pang S.P. Smith,R. Herman, et. Fatigue Life Assessment on an Automotive Engine Exhaust Valve, SAE Paper 2006-01-0977.

DOI: 10.4271/2006-01-0977

Google Scholar