Urban Congestion Pricing: Practices and Future Development

Article Preview

Abstract:

This paper addresses the practical implementations of congestion pricing schemes adopted in urban cities for mitigating traffic congestions. A review is first provided for the practices of congestion pricing schemes established globally, which include the area licensing charge and pay-per-entry charge. Then, the methods for toll rate determination are presented. To promote the use of congestion pricing schemes, some views are finally proposed for their future development, including the distance-based charge and strategies for improving its public acceptance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

787-793

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Liu, Z. and Meng, Q., (2013). Distributed Computing Approaches for Large-scale Probit-based Stochastic User Equilibrium Problem, Journal of Advanced Transportation, 47, 553-571.

DOI: 10.1002/atr.177

Google Scholar

[2] Yang, H. and Huang, H. J., (2005). Mathematical and Economic Theory of Road Pricing. Elsevier Ltd.

Google Scholar

[3] Hearn, D. W., Ramana, M. V. (1998). Solving congestion toll pricing models. In P. Marcotte, & S. Nguyen, Equilibrium and advanced transportation modeling (pp.109-124). Boston: Kluwer Academic.

DOI: 10.1007/978-1-4615-5757-9_6

Google Scholar

[4] Liu, Z., Meng, Q., Wang S., (in press). Variational inequality modelfor cordon-based congestion pricing under side constrained stochastic user equilibrium conditions, Transportmetrica, DOI: 10. 1080/23249935. 2013. 821228.

DOI: 10.1080/23249935.2013.821228

Google Scholar

[5] Bie, Y., Liu, Z., Ma, D., Wang, D., 2013. Calibration of platoon dispersion parameter considering the impact of number of lanes, Journal of Transportation Engineering, 139(2), 200–207.

DOI: 10.1061/(asce)te.1943-5436.0000443

Google Scholar

[6] Wang, S., Meng, Q., Liu, Z., (2013). Fundamental properties of volume-capacity ratio of a private toll road in general networks. Transportation Research Part B, 47, 77-86.

DOI: 10.1016/j.trb.2012.09.006

Google Scholar

[7] Eliasson, J., Hultkrantz, L., Nerhagen, L., and Rosqvist, L. S. (2009). The Stockholm congestion-charging trial 2006: Overview of effects. Transportation Research Part A, 43 (3), 240-250.

DOI: 10.1016/j.tra.2008.09.007

Google Scholar

[8] Meng, Q. and Liu, Z., (2012). Impact Analysis of Cordon-based Congestion Pricing Scheme on Mode-Split of Bimodal Transportation Network. Transportation Research Part C, 21(1), 134-147.

DOI: 10.1016/j.trc.2011.06.007

Google Scholar

[9] Liu, Z. and Meng, Q., (2012). Modelling transit-based park-and-ride services on a multimodal network with congestion pricing schemes. International Journal of Systems Science, DOI: 10. 1080/00207721. 2012. 743617.

Google Scholar

[10] Yan, Y., Liu, Z., Meng, Q., Yu, J. (2013). Robust network design for bus transit system with stochastic travel time. Journal of Transportation Engineering, DOI: 10. 1061/ (ASCE)TE. 1943-5436. 0000536.

DOI: 10.1061/(asce)te.1943-5436.0000536

Google Scholar

[11] Liu, Z., Yan, Y., Qu, X., and Zhang, Y. (2013). Bus stop-skipping scheme with random travel time, Transportation Research Part C, 35, 46-56.

DOI: 10.1016/j.trc.2013.06.004

Google Scholar

[12] Meng, Q., and Qu, X., (2013). Bus dwell time estimation at bus bays: A probabilistic approach. Transportation Research Part C, 36, 61-71.

DOI: 10.1016/j.trc.2013.08.007

Google Scholar

[13] Tsekeris, T., VOß, S. (2009). Design and evaluation of road pricing: state-of-the-art and methodological advances. Netnomic , 10, 5-52.

DOI: 10.1007/s11066-008-9024-z

Google Scholar

[14] Liu, Z., Wang, S. and Meng, Q., (2013). Toll pricing framework under logit-based stochastic user equilibrium constraints, Journal of Advanced Transportation. DOI: 10. 1002/atr. 1255.

DOI: 10.1002/atr.1255

Google Scholar

[15] Meng, Q., Qu, X., Wang, X., Yuanita, V., and Wong, S.C., (2011). Quantitative risk assessment modeling for non-homogeneous urban road tunnels. Risk Analysis. 31, 382-403.

DOI: 10.1111/j.1539-6924.2010.01503.x

Google Scholar

[16] Meng, Q., Qu, X., Yong, K.T., and Wong, Y.H. (2011). QRA model based risk impact analysis of traffic flow in urban road tunnels. Risk Analysis. 31, 1872-1882.

DOI: 10.1111/j.1539-6924.2011.01624.x

Google Scholar

[17] Meng, Q., and Qu, X., (2012). Uncertainty Propagation in Quantitative Risk Assessment Modeling for Fire in Road Tunnels. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews. 42, 1454-1464.

DOI: 10.1109/tsmcc.2012.2190982

Google Scholar

[18] Seik, F. T. (1997). An effective demand management instrument in urban transport: the Area Licensing Scheme in Singapore. Cities , 14, 155-164.

DOI: 10.1016/s0264-2751(97)00055-3

Google Scholar

[19] Liu, Z. and Meng, Q. and Wang, S., (2013). Speed-based Toll Design for Cordon-Based Congestion Pricing Scheme, Transportation Research Part C, 31, 83-98.

DOI: 10.1016/j.trc.2013.02.012

Google Scholar

[20] Santos, G. (2008). The London congestion charging scheme. In a. C. -H. H.W. Richardson, Road congestion pricing in Europe – implications for the United States (pp.159-175). Northampton: Ed. Edward Elgar.

DOI: 10.4337/9781848441453.00015

Google Scholar

[21] Seik, F. T. (2000). An advanced demand management instrument in urban transport: electronic road pricing in Singapore. Cities , 17 (1), 33-45.

DOI: 10.1016/s0264-2751(99)00050-5

Google Scholar

[22] Rotaris, L., Danielis, R., Marcucci, E. And Massiani, J., (2010). The urban road pricing scheme to curb pollution in Milan, Italy: Description, mpacts and preliminary cost-benefit analysis assessment. Transportation Resesarch Part A, 44, 359-375.

DOI: 10.1016/j.tra.2010.03.008

Google Scholar

[23] Wilson, P. W. (1988). Welfare effects of congestion pricing in Singapore. Transportation, 15 (3), 191-210.

DOI: 10.1007/bf00837581

Google Scholar

[24] Yin, Y., and Lawphongpanich S., (2006). Internalizing emission externality on road networks, Transportation Research Part D, 11(4), 292-301.

DOI: 10.1016/j.trd.2006.05.003

Google Scholar

[25] Lawphongpanich, S., Hearn, D. W., and Smith, M. J. (2006). Mathematical and Computational Models for Congestion Charging. New York: Springer.

Google Scholar

[26] Small, K. A. (1992). Using the revenues from congestion pricing. Transportation, 19 (4), 359-381.

DOI: 10.1007/bf01098639

Google Scholar

[27] Han, D., Yang, H. (2008). The multi-class, multi-criterion traffic equilibrium and the efficiency of congestion pricing. Transportation Research Part E, 44 (5), 753-773.

DOI: 10.1016/j.tre.2007.07.011

Google Scholar

[28] Ferrari, P. (1995). Road pricing and network equilibrium. Transportation Research Part B, 29 (5), 357-372.

DOI: 10.1016/0191-2615(95)00013-4

Google Scholar

[29] Yang, H., Bell, M. G. (1997). Traffic restraint, road pricing and network equilibrium. Transportation Research Part B, 31 (4), 303-314.

DOI: 10.1016/s0191-2615(96)00030-6

Google Scholar

[30] Meng, Q., Liu, Z. (2011). Trial-and-Error Method for Congestion Pricing Scheme under Side-Constrained Probit-Based Stochastic User Equilibrium Conditions. Transportation, 38 (5), 819-843.

DOI: 10.1007/s11116-011-9346-9

Google Scholar

[31] Li, M. Z. (2002). The Role of Speed-Flow Relationship in Congestion Pricing Implementation with an Application to Singapore. Transportation Research Part B , 36 (8), 731-754.

DOI: 10.1016/s0191-2615(01)00026-1

Google Scholar

[32] Olszewski, P., Xie, L. (2005). Modelling the effects of road pricing on traffic in Singapore. Transportation Research Part A, 39 (7-9), 755-772.

DOI: 10.1016/j.tra.2005.02.015

Google Scholar

[33] Meng, Q. and Liu, Z., (2012). Mathematical Models and Computational Algorithms for Probit-based Asymmetric Stochastic User Equilibrium Problem with Elastic Demand. Transportmetrica, 8(4), 261-290.

DOI: 10.1080/18128601003736026

Google Scholar

[34] Meng, Q. and Liu, Z. and Wang S., (2013). Asymmetric Stochastic User Equilibrium Problem with Link Capacity Constraints and Elastic Demand, Transportmetrica. DOI: 10. 1080/23249935. 2013. 765929.

DOI: 10.1080/23249935.2013.765929

Google Scholar

[35] Meng, Q., Liu, Z. and Wang, S., (2012). Optimal Distance-based Toll Design For Cordon-based Congestion Pricing Scheme with Continuously Distributed Value-of-time. Transportation Research Part E, 48(5), 937-957.

DOI: 10.1016/j.tre.2012.04.004

Google Scholar