The Application of Computational Fluid Dynamics (CFD) in Wastewater Biological Treatment Field

Article Preview

Abstract:

Computational fluid dynamics (CFD), which is a widely used technique, has been applied to the wastewater biological treatment field recently. It can clearly reveal the inner flow state that is the hydraulic condition of a biological reactor. In engineering, it is able to guide the optimization, and even the design. This paper reviews the application of CFD in the main biological reactors, including: stabilization pond, membrane bioreactor and activated sludge reactor. In addition, the existing difficulties are thoroughly analyzed from three aspects: the current researches, the limitation of the studies and the reasons of the limitation. The ultimate purpose of this review is to point out the developing direction of the research and to inspire researchers to expand the use of CFD in this field.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

711-715

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. Matko, N. Fawcett, A. Sharp, T. Stephenson: Process Safety and Environmental Protection 1996, 74, 245.

DOI: 10.1205/095758296528590

Google Scholar

[2] R. J. G. Lopes, R. M. Quinta-Ferreira: Chemical Engineering Journal 2010, 160, 293.

Google Scholar

[3] H. Abbas, R. Nasr, H. Seif: Ecological Engineering 2006, 28, 25.

Google Scholar

[4] D. O. Olukanni, J. J. Ducoste: Ecological Engineering 2011, 37, 1878.

Google Scholar

[5] A. Alvarado, M. Vesvikar, J. F. Cisneros, T. Maere, P. Goethals, I. Nopens: Water Research 2013, 47, 4528.

DOI: 10.1016/j.watres.2013.05.016

Google Scholar

[6] M. W. D. Brannock, H. De Wever, Y. Wang, G. Leslie: Desalination 2009, 236, 244.

Google Scholar

[7] M. Brannock, G. Leslie, Y. Wang, S. Buetehorn: Desalination 2010, 250, 815.

Google Scholar

[8] N. Ratkovich, C. C. V. Chan, T. R. Bentzen, M. R. Rasmussen: Water Science and Technology 2012, 65, (2061).

Google Scholar

[9] E. Amini, M. R. Mehrnia, S. M. Mousavi, N. Mostoufi: Industrial & Engineering Chemistry Research 2013, 52, 9930.

Google Scholar

[10] M. D. Jensen, P. Ingildsen, M. R. Rasmussen, J. Laursen: Water Science and Technology 2006, 53, 257.

Google Scholar

[11] Y. Fayolle, A. Cockx, S. Gillot, M. Roustan, A. Heduit: Chemical Engineering Science 2007, 62, 7163.

DOI: 10.1016/j.ces.2007.08.082

Google Scholar

[12] Y. Le Moullec, O. Potier, C. Gentric, J. P. Leclerc: Chemical Engineering Science 2008, 63, 2436.

Google Scholar

[13] L. Luo, W. M. Li, Y. S. Deng, T. Wang: Journal of Environmental Sciences-China 2005, 17, 808.

Google Scholar

[14] N. Xu, L. Fan, H. T. Pang, H. C. Shi: Canadian Journal of Chemical Engineering 2010, 88, 728.

Google Scholar

[15] Y. Yang, J. K. Yang, J. L. Zuo, Y. Li, S. He, X. Yang, K. Zhang: Water Research 2011, 45, 3439.

Google Scholar

[16] R. N. Meroney, P. E. Colorado: Water Research 2009, 43, 1040.

Google Scholar

[17] J. Ding, X. Wang, X. F. Zhou, N. Q. Ren, W. Q. Guo: Bioresource Technology 2010, 101, 7005.

Google Scholar

[18] X. Wang, J. Ding, N. Q. Ren, B. F. Liu, W. Q. Guo: International Journal of Hydrogen Energy 2009, 34, 9686.

Google Scholar

[19] X. Wang, J. Ding, W. Q. Guo, N. Q. Ren: Bioresource Technology 2010, 101, 9749.

Google Scholar