[1]
ZhuCR. Ultrahigh speed grinding and its key technology[J]. Grinding Machine Tool and Grinding, 2000, 4: 51-52.
Google Scholar
[2]
CaiGQ, FengBF, ZhaoHH. Thenewest development of grinding technology[A]. Chinese Mechanical Engineering Society 2002 Conference Paper[C]. Beijing: Mechanical Industry Press, 2002: 55.
Google Scholar
[3]
Rowe W B, Morgan M N, Black S C E. Validation of thermal properties in grinding[J]. Annals of the CIRP, 1998, 47(1): 275-279.
DOI: 10.1016/s0007-8506(07)62833-9
Google Scholar
[4]
John A Webster. Design of a 250m/s CBN grinding machine[J]. Society of Manufacturing Engineers, 1990, (10): 2-18.
Google Scholar
[5]
Hwang T W, Evans C J, Whitenton S P, et al. High speed grinding of silicon nitride with electro plated diamond wheels, part 2: wheels topography and grinding mechanisms[J]. Transactions of the ASME, 2000, 122(2): 42-50.
DOI: 10.1115/1.538909
Google Scholar
[6]
Hwang T W, Evans C J, Whitenton S P, et al. High speed grinding of silicon nitrid ewith electro plated diamond wheels, part 1: wear and wheel life[J]. Transactions of the ASME, 2000, 122(2): 32-41.
DOI: 10.1115/1.538908
Google Scholar
[7]
Hwang T W, Evans C J, Malkin S. An investigation of high speed grinding with electro plated diamond wheels[J]. Annals of the CIRP, 2000, 49: 245-248.
DOI: 10.1016/s0007-8506(07)62938-2
Google Scholar
[8]
Akinori YUIKH, Wa-soo LEE. Surface grinding with ultrahigh speed CBN wheel[J]. Journal of Materials Processing Technology, 1996, 62: 393-396.
DOI: 10.1016/s0924-0136(96)02441-7
Google Scholar
[9]
Masayuki Takahashi, Shuji Ueda, Toshiji Kurobe. Ultrahigh speed grinding with a single point diamond[J]. Int J Japan Soc Prec Eng, 1993, 7: 140-141.
Google Scholar
[10]
Masayuki Takahashi, Shuji Ueda. Ultrahigh speed grinding using berylliucore diamond wheels[J]. Int J Japan Soc Prec Eng, 1994, 28(12): 342-343.
Google Scholar
[11]
Dongxiang Chen, Yanling Tian. Modeling and Simulation Methodology of the Machined Surface in Ultra-precision Grinding[J]. Journal of Mechanical Engineering, 2010, 46(13): 186-191.
DOI: 10.3901/jme.2010.13.186
Google Scholar
[12]
Tao Wang, Jian Li. Status quo and development trend of grinding technology[J]. Machinery Design & Manufacture, 2003(2): 116-118.
Google Scholar
[13]
Yunfeng Wu, Jie Chen. The Summarization of Precision and Ultraprecision Machining Technology[J]. New Technology & New Process, 2007(6): 38-40.
Google Scholar
[14]
Wei Feng, Jun Pi. Developments of Precision and Ultra-Precision Grinding Technology[J]. Journal of Jimei University(Natural Science), 2010, 15(1): 53-56.
Google Scholar
[15]
Shichao Xiu, Qiang Feng. Frame of Theory and Achieving Technology for Green Grinding Process[J]. Manufacturing Technology & Machine Tool, 2008(10): 28-32.
Google Scholar
[16]
Yali Hou, Changhe Li, Bingheng Lu. Key Technology and Application of Super-high Speed Grinding Machining[J]. Bearing, 2009(3): 51-56.
Google Scholar
[17]
Rowe W B, Jin T. Temperature in high efficiency deep grinding[J]. Annals of the CIRP, 2002, 51(1): 205-208.
Google Scholar
[18]
Eda H, Zhou L, Nakano H, et al. Large scale<300 Si wafer: atotal integrated fixed-abrasive solution[ J]. Annals of the CIRP, 2001, 50(1): 225-228.
DOI: 10.1016/s0007-8506(07)62110-6
Google Scholar
[19]
J l Yuan, B Lin, Z W Shen, et al. New ultraprecision polishing techniques of glass BK-7 optical plate[J]. Key Engineering Materials, 2001, 202: 235-238.
DOI: 10.4028/www.scientific.net/kem.202-203.235
Google Scholar
[20]
Hood R, Aspinwall D K, Voice W. Creep Feed Grinding of a Gamma Titanium Aluminide Intermetallic Alloy U2 sing SiC Abrasives[J]. Journal of Materials Processing Technology, 2007, 191( 1/3).
DOI: 10.1016/j.jmatprotec.2007.03.081
Google Scholar