Design and Synthesis of a Novel Mesoporous Composite and its Performance as the Support for the Catalyst

Article Preview

Abstract:

A novel synthesis route for a MCM-41 structure with Y zeolite seeds colloidal has been developed. The route is different from conversational method of highly ordered MCM-41 assembled from Y zeolite seed colloidal. The material was characterized by various techniques. The results indicate that the material has well-ordered hexagonal structure, with a thicker wall than that of the sample synthesized by a direct hydrothermal route (N-MCM-41). Furthermore, it has a stronger acidity. The sample was used as the support of a Pd-Pt catalyst for the polyaromatics hydrogenation. It was demonstrated that the introduction of building units of Y zeolite enhances the activity of polyaromatics hydrogenation. It can be concluded that the pore structure and acidity of support is a key factor for the design of a sulfur-resistant noble metal catalyst for aromatics saturation of diesel.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

23-28

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Tanabe K.; Hoelderich W. F. Appl. Catal. 181 (1999) 399.

Google Scholar

[2] Stanislaus, A; Cooper, B. H. Catal. Rev. Sci. Eng. 36 (1994) 75.

Google Scholar

[3] Song, C. S. Chemtech. 29 (1999) 26.

Google Scholar

[4] Fujikawa, T.; Chiyoda. O.; Tsukagoshi, M.; Idei, K.; Takehara, S. Catal. Today 45 (1998) 307.

Google Scholar

[5] Knudsen, K. G.; Cooper, B. H.; Topsfe, H. Appl. Catal. A 189 (1999) 205.

Google Scholar

[6] Meng, X. C.; Wu, Y. X.; Li, Y. D. J. Porous Mater. 13 (2006) 365.

Google Scholar

[7] Song, C.; Ma, X. Appl. Catal. B 41 ( 2003) 207.

Google Scholar

[8] Whitehurst, D. D.; Farag, H.; Nagamatsu, T.; Sakanishi, I.; Mochida, I. Catal. Today 45 (1998) 299.

Google Scholar

[9] Janicke M. T.; Landry C. C.; Chistiansen S. C.; Brirtalan S. B.; Stucky G. D.; Chmelka B. F. Chem. Mater. 11 (1999) 1342.

Google Scholar

[10] Ryoo R.; Ko C. H.; Howe R. F. Chem. Mater. 9 (1998) 1607.

Google Scholar

[11] Biz S.; White M. G. J. Phys. Chem. B 103 (1999) 8432.

Google Scholar

[12] Liu Y.; Zhang W. Z.; Pinnavania T. J. J. Am. Chem. Soc. 122 (2000) 8791.

Google Scholar

[13] Zhang Z. T.; Han Y.; Xiao F. S. J. Am. Chem. Soc. 123 (2001) 5014.

Google Scholar

[14] Kresge C. T.; Leonowicz M. E.; Roth W. J.; Beck J. C. Nature 359 (1992) 710.

Google Scholar

[15] Meng X. C.; Wu Y. X.; Li Y. D. J. Porous Mater. 13 (2006) 375.

Google Scholar

[16] Flanigen E. M.; In: Rabo J. A., ed. Zeolite chemistry and catalysis. Washington: American Chemical Society, 1976. 95.

Google Scholar

[17] Luan Z.; Hartmann M.; Zhao D. Chem. Mater. 11 (1999) 1621.

Google Scholar