First Principles Study on Structural and Electronic Properties of LiFeSO4OH Cathode Material for Lithium Ion Batteries

Article Preview

Abstract:

Structural and electronic properties of a new fluorine-free cathode material of polyanionichydroxysulfates, LiFeSO4OH with caminite structure are studied using first principles density functional theory. From the calculated result, it reveals that antiferromagnetic configuration is more stable compared to ferromagnetic and non-magnetic configuration. Meanwhile, the density of state calculation divulges that this material exhibited large d-d type of band gap and would behave as a Mott-Hubbard insulator. Thus, this behaviour can lead to poor electronic conductivity.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

33-38

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Ati, M. -T. Sougrati, G. Rousse, N. Recham, M. -L. Doublet, J. -C. Jumas, Chemistry of Materials. 24 (2012) 1472–1485.

Google Scholar

[2] K. Mizushima, P. Jones, P. Wiseman, J.B. Goodenough, Solid State Ionics. 3-4 (1981) 171–174.

Google Scholar

[3] M. Yoshio, S. Inoue, M. Hyakutake, G. Piao, H. Nakamura, Journal of Power Sources. 34 (1991) 147–152.

Google Scholar

[4] S. Yamada, M. Fujiwara, M. Kanda, Journal of Power Sources. 54 (1995) 209–213.

Google Scholar

[5] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Journal of the Electrochemical Society. 144 (1997) 1188–1194.

Google Scholar

[6] A. Nytén, A. Abouimrane, M. Armand, T. Gustafsson, J.O. Thomas, Electrochemistry Communications. 7 (2005) 156–160.

DOI: 10.1016/j.elecom.2004.11.008

Google Scholar

[7] S. Nishimura, M. Nakamura, R. Natsui, A. Yamada, Journal of the American Chemical Society. 132 (2010) 13596–7.

Google Scholar

[8] B.L. Ellis, K. Town, L.F. Nazar, ElectrochimicaActa. 84 (2012) 145–154.

Google Scholar

[9] C. V Subban, M. Ati, G. Rousse, A.M. Abakumov, G. Van Tendeloo, R. Janot, et al., Journal of the American Chemical Society. 135 (2013) 3653–61.

Google Scholar

[10] A.K. Padhi, V. Manivannan, J.B. Goodenough, Journal of The Electrochemical Society. 145 (1998) 1518–1520.

Google Scholar

[11] N. Recham, J. -N. Chotard, L. Dupont, C. Delacourt, W. Walker, M. Armand, et al., Nature Materials. 9 (2010) 68–74.

Google Scholar

[12] M. Ati, B.C. Melot, J. -N. Chotard, G. Rousse, M. Reynaud, J. -M. Tarascon, Electrochemistry Communications. 13 (2011) 1280–1283.

DOI: 10.1016/j.elecom.2011.08.023

Google Scholar

[13] T. Tsevelmaa, D. Odkhuu, O. Kwon, S. Cheol Hong, Journal of Applied Physics. 113 (2013) 17B302.

DOI: 10.1063/1.4794723

Google Scholar

[14] M.F.M. Taib, M.K. Yaakob, O.H. Hassan, A. Chandra, A.K. Arof, M.Z.A. Yahya , Ceramics International. 39 (2013) S297–S300.

DOI: 10.1016/j.ceramint.2012.10.081

Google Scholar

[15] M.F.M. Taib, M.K. Yaakob, A. Chandra, A.K. Arof, M.Z.A. Yahya, Advanced Materials Research. 501 (2012) 342–346.

Google Scholar

[16] M.F.M. Taib, M.K. Yaakob, O.H. Hassan, M.Z.A. Yahya, Integrated Ferroelectrics. 142 (2013) 119–127.

Google Scholar

[17] M.K. Yaakob, M.F.M. Taib, M.Z.A. Yahya, Advanced Materials Research. 501 (2012) 352–356.

Google Scholar

[18] D. Vanderbilt, Physical Review B. 41 (1990) 7892–7895.

Google Scholar

[19] M. Segall, P. Lindan, Journal of Physics: Condensed Matter. 14 (2002) 2717–2744.

Google Scholar

[20] C. Sirisopanaporn, C. Masquelier, P.G. Bruce, a R. Armstrong, R. Dominko, Journal of the American Chemical Society. 133 (2011) 1263–5.

Google Scholar

[21] P. Larsson, R. Ahuja, A. Liivat, J.O. Thomas, Computational Materials Science. 47 (2010) 678–684.

Google Scholar

[22] Y. Cai, G. Chen, X. Xu, F. Du, Z. Li, X. Meng, et al., The Journal of Physical Chemistry C. 115 (2011) 7032–7037.

Google Scholar