Establishment of Structural and Elastic Properties of Titanate Compounds Based on Pb, Sn and Ge by First-Principles Calculation

Article Preview

Abstract:

Structural, electronic, and optical properties of PbTiO3, SnTiO3, and GeTiO3 tetragonals (P4mm, 99 space group) were investigated using density functional theory as implemented in pseudo-potential plane wave in CASTEP computer code. The calculated equilibrium lattice parameter, electronic band structure, and optical properties for PbTiO3 (reference compound) are in good agreement with the available experiment data. The result also shows that GeTiO3 has a higher tetragonality (c/a=1.18) compared with SnTiO3 (c/a=1.15) and PbTiO3 (c/a=1.05). Calculations of the elastic constants of PbTiO3, SnTiO3, and GeTiO3 tetragonals show that they are mechanically stable. The electronic band structure shows that PbTiO3 has higher indirect band gap at X-G compared with SnTiO3 and GeTiO3, as explained in detail by the optical properties of ATiO3 (A=Pb, Sn, Ge) through the refractive index and absorption coefficient.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

57-62

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] KM Rabe, Ph Ghosez : First-principles study of Ferroelectric oxides. Ed. By Rabe K. M, Ahn C H, Triscone J-M.: Physics of Ferroelectrics: A modern Perspective. Topics Applied Physics Springer-Verlag, Berlin. 105(2007)117.

DOI: 10.1007/978-3-540-34591-6_4

Google Scholar

[2] R Guo, C-A Wang, A Yang: Effects of pore size and orientation on dielectric and piezoelectric properties of 1-3 type porous PZT ceramics. Journal of the European Ceramic Society 31(2011)605-609.

DOI: 10.1016/j.jeurceramsoc.2010.10.019

Google Scholar

[3] SF Matar, I Baraille, MA Subramaniam: First principles studies of SnTiO3 perovskite as potential environmentally benign ferroelectric material. Chemical Physics. 355(2009)43-49.

DOI: 10.1016/j.chemphys.2008.11.002

Google Scholar

[4] WD Parker, JM Rondinelli, SM Nakhmanson: First Principles study of misfit strain-stabilized ferroelectric SnTiO3. Phys. Rev. B. 84(2011)2451267.

DOI: 10.1103/physrevb.84.245126

Google Scholar

[5] MFM Taib, MK Yaakob, OH Hassan, Chandra Amreesh, AK Arof, MZA Yahya: First principle calculation on structural and lattice dynamic of SnTiO3 and SnZrO3. Ceramic International. 39(2013)S297-S300.

DOI: 10.1016/j.ceramint.2012.10.081

Google Scholar

[6] M Ahart, M Somayazulu, R E Cohen, P Ganesh, P Dera, Mao Ho-kwang, RJ Hemley, Y Ren, P Liermann, Z Wu: Origin of morphotropic phase boundaries in ferroelectrics. Nature 451(2008)doi: 10. 1038/nature06459.

DOI: 10.1038/nature06459

Google Scholar

[7] R Cohen, P Ganesh: Class of pure piezoelectric materials. United State Patent: US 2009/0291324 A1.

Google Scholar

[8] MD Segall, PJD Lindan, MJ Probert, CJ Pickard, PJ Hasnip, SJ Clark, MC Payne: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter; 14(2002)2717.

DOI: 10.1088/0953-8984/14/11/301

Google Scholar

[9] HJ Monkhorst and JD Pack: On Special Points for Brillouin Zone Integrations. Phys. Rev. B, 13(1976)5188.

DOI: 10.1103/physrevb.13.5188

Google Scholar

[10] G Shirane, R Pepinsky, BC Frazer: X-ray and neutron diffraction study of ferroelectric PbTiO3. Phys. Rev. 97(1955)1179-1180.

Google Scholar

[11] Y Zhao, DG Truhlar: Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb-Oxford bound. J. Chem. Phys, 128(2008) 184109 (8 pages).

DOI: 10.1063/1.2912068

Google Scholar

[12] MFM Taib, MK Yaakob, OH Hassan, MZA Yahya: Structural, Electronic and lattice dynamic of PbTiO3, SnTiO3 and SnZrO3: A comparative First principles Study. Integrated Ferroelectric. 142(2013)119-127.

DOI: 10.1016/j.ceramint.2012.10.081

Google Scholar

[13] AG Kalinichev, JD Bass, BN Sun, DA Payne: Elastic properties of tetragonal PbTiO3 single crystals by Brillouin scattering. J. Mater. Res., 12(1997)2623–2627.

DOI: 10.1557/jmr.1997.0349

Google Scholar

[14] Z Li, M Grimsditch, CM Foster, S. -K Chan: Dielectric and elastic properties of ferroelectric materials at elevated temperature. J. Phys. Chem. Solids, 57(1996)1433–1438.

DOI: 10.1016/0022-3697(96)00009-1

Google Scholar

[15] MFM Taib, MK Yaakob, FW Badrudin, TIT Kudin, OH Hassan, MZA Yahya: First-Principles Calculation of the Structural, Elastic, Electronic, and Lattice Dynamics of GeTiO3. Ferroelectric, process to published.

DOI: 10.1080/00150193.2013.841525

Google Scholar

[16] SM Hosseini , T Movlarooy, A Kompany: First-principle calculations of the cohesive energy and the electronic properties of PbTiO3. Physica B, 391(2007)316–321.

DOI: 10.1016/j.physb.2006.10.013

Google Scholar

[17] HO Yadav, Ceram. Int. 30 (2004) 1493.

Google Scholar

[18] XT Chen, H Yamane, KJ Kaya: Synthesis and properties of highly c-axis oriented PbTiO3 thin films prepared by and MOCVD method. Phys. III France, 2(1992)1439–1444.

DOI: 10.1051/jp3:1992188

Google Scholar