[1]
KM Rabe, Ph Ghosez : First-principles study of Ferroelectric oxides. Ed. By Rabe K. M, Ahn C H, Triscone J-M.: Physics of Ferroelectrics: A modern Perspective. Topics Applied Physics Springer-Verlag, Berlin. 105(2007)117.
DOI: 10.1007/978-3-540-34591-6_4
Google Scholar
[2]
R Guo, C-A Wang, A Yang: Effects of pore size and orientation on dielectric and piezoelectric properties of 1-3 type porous PZT ceramics. Journal of the European Ceramic Society 31(2011)605-609.
DOI: 10.1016/j.jeurceramsoc.2010.10.019
Google Scholar
[3]
SF Matar, I Baraille, MA Subramaniam: First principles studies of SnTiO3 perovskite as potential environmentally benign ferroelectric material. Chemical Physics. 355(2009)43-49.
DOI: 10.1016/j.chemphys.2008.11.002
Google Scholar
[4]
WD Parker, JM Rondinelli, SM Nakhmanson: First Principles study of misfit strain-stabilized ferroelectric SnTiO3. Phys. Rev. B. 84(2011)2451267.
DOI: 10.1103/physrevb.84.245126
Google Scholar
[5]
MFM Taib, MK Yaakob, OH Hassan, Chandra Amreesh, AK Arof, MZA Yahya: First principle calculation on structural and lattice dynamic of SnTiO3 and SnZrO3. Ceramic International. 39(2013)S297-S300.
DOI: 10.1016/j.ceramint.2012.10.081
Google Scholar
[6]
M Ahart, M Somayazulu, R E Cohen, P Ganesh, P Dera, Mao Ho-kwang, RJ Hemley, Y Ren, P Liermann, Z Wu: Origin of morphotropic phase boundaries in ferroelectrics. Nature 451(2008)doi: 10. 1038/nature06459.
DOI: 10.1038/nature06459
Google Scholar
[7]
R Cohen, P Ganesh: Class of pure piezoelectric materials. United State Patent: US 2009/0291324 A1.
Google Scholar
[8]
MD Segall, PJD Lindan, MJ Probert, CJ Pickard, PJ Hasnip, SJ Clark, MC Payne: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter; 14(2002)2717.
DOI: 10.1088/0953-8984/14/11/301
Google Scholar
[9]
HJ Monkhorst and JD Pack: On Special Points for Brillouin Zone Integrations. Phys. Rev. B, 13(1976)5188.
DOI: 10.1103/physrevb.13.5188
Google Scholar
[10]
G Shirane, R Pepinsky, BC Frazer: X-ray and neutron diffraction study of ferroelectric PbTiO3. Phys. Rev. 97(1955)1179-1180.
Google Scholar
[11]
Y Zhao, DG Truhlar: Construction of a generalized gradient approximation by restoring the density-gradient expansion and enforcing a tight Lieb-Oxford bound. J. Chem. Phys, 128(2008) 184109 (8 pages).
DOI: 10.1063/1.2912068
Google Scholar
[12]
MFM Taib, MK Yaakob, OH Hassan, MZA Yahya: Structural, Electronic and lattice dynamic of PbTiO3, SnTiO3 and SnZrO3: A comparative First principles Study. Integrated Ferroelectric. 142(2013)119-127.
DOI: 10.1016/j.ceramint.2012.10.081
Google Scholar
[13]
AG Kalinichev, JD Bass, BN Sun, DA Payne: Elastic properties of tetragonal PbTiO3 single crystals by Brillouin scattering. J. Mater. Res., 12(1997)2623–2627.
DOI: 10.1557/jmr.1997.0349
Google Scholar
[14]
Z Li, M Grimsditch, CM Foster, S. -K Chan: Dielectric and elastic properties of ferroelectric materials at elevated temperature. J. Phys. Chem. Solids, 57(1996)1433–1438.
DOI: 10.1016/0022-3697(96)00009-1
Google Scholar
[15]
MFM Taib, MK Yaakob, FW Badrudin, TIT Kudin, OH Hassan, MZA Yahya: First-Principles Calculation of the Structural, Elastic, Electronic, and Lattice Dynamics of GeTiO3. Ferroelectric, process to published.
DOI: 10.1080/00150193.2013.841525
Google Scholar
[16]
SM Hosseini , T Movlarooy, A Kompany: First-principle calculations of the cohesive energy and the electronic properties of PbTiO3. Physica B, 391(2007)316–321.
DOI: 10.1016/j.physb.2006.10.013
Google Scholar
[17]
HO Yadav, Ceram. Int. 30 (2004) 1493.
Google Scholar
[18]
XT Chen, H Yamane, KJ Kaya: Synthesis and properties of highly c-axis oriented PbTiO3 thin films prepared by and MOCVD method. Phys. III France, 2(1992)1439–1444.
DOI: 10.1051/jp3:1992188
Google Scholar