[1]
K. J. Horadam, EA and CCZ equivalence of functions over , volume 5130 of Lecture Notes in Computer Science, pages 134-143, Springer-Verlag, (2008).
DOI: 10.1007/978-3-540-69499-1_12
Google Scholar
[2]
G. Kyureghyanr, Crooked maps in , Finite Fields Their Applic., 2007, 13: 713-726.
Google Scholar
[3]
J. Bierbrauer and G. M. Kyureghyanr, Crooked binomials, Des. Codes Cryptogr., 2008, 46: 269-301.
DOI: 10.1007/s10623-007-9157-3
Google Scholar
[4]
H. Dobbertin, Almost perfect nonlinear power functions over : A new case for n divisible by 5, In Proc. Conf. Finite Fields and Applications FQ5, D. Jungnickel and H. Niederreiter, Eds. Augsburg, Germany: Springer, 2000. 113-121.
DOI: 10.1007/978-3-642-56755-1_11
Google Scholar
[5]
L. Budaghyan and C. Carlet, Classes of quadratic APN trinomials and Hexanomials and related structures, IEEE Trans. Inf. Theory, 2008, 54(5): 2354-2357.
DOI: 10.1109/tit.2008.920246
Google Scholar
[6]
L. Budaghyan, C. Carlet, and A. Pott, New classes of almost bent and almost perfect nonlinear functions, IEEE Trans. Inf. Theory, 2006, 52(3): 1141-1152.
DOI: 10.1109/tit.2005.864481
Google Scholar
[7]
T. Bethand and C. Ding, On almost perfect nonlinear permutations, In Advances in Cryptology - EUROCRYPT 93, volume 765 of Lecture Notes in Computer Science, pages 65-76, Springer-Verlag, (1994).
DOI: 10.1007/3-540-48285-7_7
Google Scholar
[8]
C. Bracken, E. Byrne, N. Markin and G. McGuire, New families of quadratic almost perfect nonlinear trinomials and multinomials, Finite Fields Their Applic., 2008, 14: 703-714.
DOI: 10.1016/j.ffa.2007.11.002
Google Scholar
[9]
Q. Wang, J. Peng, H. Kan and X, Xue, Constructions of cryptographically significant Boolean functions using primitive polynomials, IEEE Trans. Inf. Theory, 2010, 56(6): 3048–3053.
DOI: 10.1109/tit.2010.2046195
Google Scholar
[10]
Q. Wang, T. Johansson and H. Kan, Some results on fast algebraic attacks and higher-order non-linearities, IET Inf. Secur., 2012, 6(1): 41–46.
DOI: 10.1049/iet-ifs.2011.0090
Google Scholar
[11]
Q. Wang and C. H. Tan, A new method to construct Boolean functions with good cryptographic properties, Inform. Process. Lett., 2013, 113: 567–571.
DOI: 10.1016/j.ipl.2013.04.017
Google Scholar
[12]
E. R. VanDam and D. Fon-Der-Flaass, Uniformly packed codes and more distance regular graphs from crooked functions, J. Algebraic Combin., 2000, 12(2): 115-121.
DOI: 10.37236/1372
Google Scholar
[13]
E. R. VanDam and D. Fon-Der-Flaass, Codes, graphs, and schemes from nonlinear functions, European J. Combin., 2003, 24(1): 85-98.
DOI: 10.1016/s0195-6698(02)00116-6
Google Scholar