Two Classes of Quadratic Crooked Functions

Article Preview

Abstract:

It is known that almost perfect nonlinear (APN) functions have many applications in cryptography, and a quadratic function is crooked if and only if it is APN. In this paper, we introduce two infinite classes of quadratic crooked multinomials on fields of order 22m. One class of APN functions constructed in [8] is a particular case of the one we construct in Theorem 1. Moreover, we prove that the two classes of crooked functions constructed in this paper are EA inequivalent to power functions and conjecture that CCZ inequivalence between them also holds.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2734-2738

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. J. Horadam, EA and CCZ equivalence of functions over , volume 5130 of Lecture Notes in Computer Science, pages 134-143, Springer-Verlag, (2008).

DOI: 10.1007/978-3-540-69499-1_12

Google Scholar

[2] G. Kyureghyanr, Crooked maps in , Finite Fields Their Applic., 2007, 13: 713-726.

Google Scholar

[3] J. Bierbrauer and G. M. Kyureghyanr, Crooked binomials, Des. Codes Cryptogr., 2008, 46: 269-301.

DOI: 10.1007/s10623-007-9157-3

Google Scholar

[4] H. Dobbertin, Almost perfect nonlinear power functions over : A new case for n divisible by 5, In Proc. Conf. Finite Fields and Applications FQ5, D. Jungnickel and H. Niederreiter, Eds. Augsburg, Germany: Springer, 2000. 113-121.

DOI: 10.1007/978-3-642-56755-1_11

Google Scholar

[5] L. Budaghyan and C. Carlet, Classes of quadratic APN trinomials and Hexanomials and related structures, IEEE Trans. Inf. Theory, 2008, 54(5): 2354-2357.

DOI: 10.1109/tit.2008.920246

Google Scholar

[6] L. Budaghyan, C. Carlet, and A. Pott, New classes of almost bent and almost perfect nonlinear functions, IEEE Trans. Inf. Theory, 2006, 52(3): 1141-1152.

DOI: 10.1109/tit.2005.864481

Google Scholar

[7] T. Bethand and C. Ding, On almost perfect nonlinear permutations, In Advances in Cryptology - EUROCRYPT 93, volume 765 of Lecture Notes in Computer Science, pages 65-76, Springer-Verlag, (1994).

DOI: 10.1007/3-540-48285-7_7

Google Scholar

[8] C. Bracken, E. Byrne, N. Markin and G. McGuire, New families of quadratic almost perfect nonlinear trinomials and multinomials, Finite Fields Their Applic., 2008, 14: 703-714.

DOI: 10.1016/j.ffa.2007.11.002

Google Scholar

[9] Q. Wang, J. Peng, H. Kan and X, Xue, Constructions of cryptographically significant Boolean functions using primitive polynomials, IEEE Trans. Inf. Theory, 2010, 56(6): 3048–3053.

DOI: 10.1109/tit.2010.2046195

Google Scholar

[10] Q. Wang, T. Johansson and H. Kan, Some results on fast algebraic attacks and higher-order non-linearities, IET Inf. Secur., 2012, 6(1): 41–46.

DOI: 10.1049/iet-ifs.2011.0090

Google Scholar

[11] Q. Wang and C. H. Tan, A new method to construct Boolean functions with good cryptographic properties, Inform. Process. Lett., 2013, 113: 567–571.

DOI: 10.1016/j.ipl.2013.04.017

Google Scholar

[12] E. R. VanDam and D. Fon-Der-Flaass, Uniformly packed codes and more distance regular graphs from crooked functions, J. Algebraic Combin., 2000, 12(2): 115-121.

DOI: 10.37236/1372

Google Scholar

[13] E. R. VanDam and D. Fon-Der-Flaass, Codes, graphs, and schemes from nonlinear functions, European J. Combin., 2003, 24(1): 85-98.

DOI: 10.1016/s0195-6698(02)00116-6

Google Scholar