[1]
ZHU Wei, TANG Yingjie, Identification of Power System Low Frequency Oscillation Mode Based on Improved Prony Algorithm [J]., Power System Technology. 2009. 33(5): 45-47. (In Chinese).
Google Scholar
[2]
Xiao Jinyu, Xie Xiaorong, Hu Zhixiang. Improved Prony method or online identification of low frequency oscillations in power system[J]., Journal of Tsinghua University (Natural Science Edition), 2004, 44(7): 883-887. (In Chinese).
DOI: 10.1109/pes.2004.1373012
Google Scholar
[3]
MagdyM A, Coowar F. Frequency domain analysis of power system forced oscillations[J]., IEE Proceedings- Generation, Transmission and Distribution, 1990, 137(4): 261-268.
DOI: 10.1049/ip-c.1990.0035
Google Scholar
[4]
HAN Zhiyong, HE Renmu, XU Yanhui, SHEN Feng. Analysis on Power System Low Frequency Oscillations Originated in Resonance Mechanism from Viewpoint of Energy[J]., Power System Technology. 2007, 31(8): 14-16. (In Chinese).
DOI: 10.1109/drpt.2008.4523581
Google Scholar
[5]
XU Yanhui, HE Renmu, HAN Zhiyong. The Cause Analysis of Turbine Power Disturbance Inducing Power System Low Frequency Oscillation of Resonance Mechanism[J]., Proceedings of the CSEE. 2007, 27 (17) : 84-87. (In Chinese).
DOI: 10.1109/drpt.2008.4523581
Google Scholar
[6]
Z. K. Peng, Peter W. Tse and F. L. Chu. A Comparison study of improved Hilbert-Huang transform and wavelet transform: Application to fault diagnosis for rolling bearing,. Mechanical Systems and Signal Processing, vol. 19, pp.974-988, (2005).
DOI: 10.1016/j.ymssp.2004.01.006
Google Scholar
[7]
Z. K. Peng, Peter W. Tse and F. L. Chu. An improved Hilbert-Huang transform and its application in vibration signal analysis,. Journal of sound and Vibration, Vol. 286, pp.187-205, (2005).
DOI: 10.1016/j.jsv.2004.10.005
Google Scholar
[8]
Cao huLi, Yijia Cao, Guang Wang. Online Identification of Low Frequency Oscillation in Power System based on Fuzzy Filter and Prony Algorithm[J]., IEEE International Conference on Power System Teehnology. 2006: 1-5. (In Chinese).
DOI: 10.1109/icpst.2006.321622
Google Scholar
[9]
P. Zhang, A.H. Coonick. Coordinated Synthesis of PSS Parameters in Multi-machine Power Systems Using the Method of Inequalities Applied to Genetic Algorithms[J]., IEEE Transactions on Power Systems, 2000, V15 (2): 811-816.
DOI: 10.1109/59.867178
Google Scholar
[10]
Wang Haojing. Research on optimized Design and Allocation Method for Power System Stabilizer[D]., 2012, North China Electric Power University. (In Chinese).
Google Scholar
[11]
Ju Ping, Xie Huan, Online identification of low-frequency oscillations based on wide-area measurement[J]., Proceedings of the CSEE, 2005, 25(22) : 56-60. (In Chinese).
Google Scholar
[12]
Xu Dongjie, He Renmu, Gao Hailong. Transfer function identification using iterative Prony method[J]. , Proceedings of the CSEE, 2004, 24(6): 40-43. (In Chinese).
Google Scholar
[13]
Wang Tieqiang, He Renmu, Xu Dongjie. The mechanism study of low frequency oscillation in power system [J]., Proceedings of the CSEE, 2002, 22(2): 21-25. (In Chinese).
Google Scholar
[14]
Gurrala G, Sen I. Power System Stabilizers Design for Interconnected Power Systems[J]., IEEE Transactions on Power System. 2010, 6(2): 1042-1045.
DOI: 10.1109/tpwrs.2009.2036778
Google Scholar
[15]
Larsen E.V., Swann D.A. Applying Power System Stabilizers, Part I: General Concepts [J]., IEEE Transactions on PAS, 1981, V100 (6): 3017-3023.
DOI: 10.1109/tpas.1981.316355
Google Scholar
[16]
Jyothsna T.R., Vaisakh,K. Effects of Strong Resonance in Tuning of Multiple Power System Stabilizers[J]., IET Gener. Transm. Distrib. 2011, V5(11): 1155-1164.
DOI: 10.1049/iet-gtd.2010.0552
Google Scholar
[17]
Abido M A. Parameter optimization of multi-machine power system stabilizers using genetic local search Electrical Power Systems Research., 2001, 58(2): 53-62.
DOI: 10.1016/s0142-0615(00)00096-x
Google Scholar