[1]
Dayou Wu. Thermodynamics, kinetic theory of gases and statistical mechanics [M]. Beijing: Science Press, (1983).
Google Scholar
[2]
S. Kirkpatrick, C. D. Gelatt, Jr., M. P. Vecchi. Optimization by Simulated Annealing [J]. Science, 1983, 220(4598): 671-680.
DOI: 10.1126/science.220.4598.671
Google Scholar
[3]
Mori N, Yoshida J, Tamaki H, Kita H, et al. A thermodynamical selection rule for the genetic algorithm [C]. IEEE Conf. on Evolutionary Computation. New Jersey: IEEE Press, 1995. 188-192.
DOI: 10.1109/icec.1995.489142
Google Scholar
[4]
W. Ying, Y. Li, SHEU Phillip C-Y et al. Geometric Thermodynamical Selection for Evolutionary Multi-Objective Optimization [J]. Chinese Journal of Computers. 2010 33(4) 755-767.
DOI: 10.3724/sp.j.1016.2010.00755
Google Scholar
[5]
K. Li, Y. Li, L. Kang, et al. A Multi-objective Evolutionary Algorithm Based on Transportation Theory [J]. Chinese Journal of Computers. 2007 30(5) 796-805.
Google Scholar
[6]
Wenyong Dong, Dengyi Zhang, Zhong Weicheng et al. The Simulation Optimization Algorithm Based on the ITO process [C]. Third International Conference on Intelligence Computing, ICIC 2007, Qingdao, China, 2007: 115-124.
Google Scholar
[7]
Xiaofeng Xie, Wenjun Zhang, Zhilian Yang. A Dissipative Particle Swarm Optimization [C]. Proceedings of the Congress on Evolutionary Computation. Honolulu, HI, USA, 2002: 1456-1461.
Google Scholar
[8]
Qing Chang, Minxian Zhong. An improvement of two dimensional threshold segmentation algorithm for infrared image [J]. Journal of East China University of Science and Technology(Natural Science Edition). 2005 31(5) 639-643.
Google Scholar
[9]
Lovbjerg M, Krink T. Extending Particle Swarm Optimisers with Self-organized Criticality[C]. Proceedings of the IEEE International Conference on Evolutionary Computation. Hawaii, USA: IEEE Press, 2002, 1588-1593.
DOI: 10.1109/cec.2002.1004479
Google Scholar
[10]
Xianbin Cao, Jianguo Duan. Evolutionary Algorithm Based on Immune Selection and SOC Mutation [J]. Journal of System Simulation. 2004 16(8) 1785-1788.
Google Scholar
[11]
Adam Prugel-Bennett and Jonathan L. Shapiro. Analysis of genetic algorithms using statistical mechanics [J]. Physical Review Letters. 1994 72 1305-1309.
DOI: 10.1103/physrevlett.72.1305
Google Scholar
[12]
J. Shapiro, Adam Prugel-Bennett. Maximum Entropy Analysis of Genetic Algorithm Operators [C]. AISB Workshop on Evolutionary Computing. Berlin: Springer, 1995. 14-24.
DOI: 10.1007/3-540-60469-3_21
Google Scholar
[13]
Lars Magnus Rattray. The Dynamics of a Genetic Algorithm under Stabilizing Selection [J]. Complex Systems. 1995 9(3) 213-234.
Google Scholar
[14]
Lars Magnus Rattray. Modelling the Dynamics of Genetic Algorithms using Statistical Mechanics [D]. Phd Thesis, Manchester, UK: University of Manchester, (1996).
Google Scholar
[15]
Alex Rogers and Adam Prugel-Bennett. Modelling the Dynamics of a Steady State Genetic Algorithm[C]. FOGA, 1998. 57-68.
Google Scholar
[16]
Alex Rogers and Adam Prugel-Bennett. Genetic drift in genetic algorithm selection schemes [J]. IEEE Trans. Evolutionary Computation. 1999 3(4) 298-303.
DOI: 10.1109/4235.797972
Google Scholar
[17]
Said M. Mikki and Ahmed A. Kishk. Particle Swarm Optimization: A Physics-Based Approach [J]. Synthesis Lectures on Computational Electromagnetics. 2008 3(1) 1-103.
DOI: 10.2200/s00110ed1v01y200804cem020
Google Scholar
[18]
Benjun Guo, Jian Huang, Dongdong Chen et al. Intelligent algorithms analysis and judgments based on thermodynamics [J]. Microelectronics & Computer. 2010 27(12) 74-77.
Google Scholar
[19]
Marc Mezard. Physics/Computer Science: Passing Messages between Disciplines [J]. Science, 2003, 301(5640): 1685-1686.
DOI: 10.1126/science.1086309
Google Scholar
[20]
Wenxiang Gu, Ping Huang, Lei Zhu et al. Research of Phase Transition in Artificial Intelligence [J]. Computer Science. 2011 38(5) 1-7.
Google Scholar
[21]
Alex Rogers and Adam Prugel-Bennett and Nicholas R. Jennings. Phase transitions and symmetry breaking in genetic algorithms with crossover [J]. Computer and Information Science, 2006, 358(1): 121-141.
DOI: 10.1016/j.tcs.2006.04.010
Google Scholar
[22]
K. Xu, W. Li. Phase transition of SAT problem [J]. China Science(E Series). 1999 29(4) 67-73.
Google Scholar
[23]
Christian Borgs, Jennifer Chayes, Boris Pittel. Phase Transition and Finite-size Scaling for the Integer Partitioning Problem [J]. Random Structures and Algorithms, 2001 19(3-4) 247-288.
DOI: 10.1002/rsa.10004
Google Scholar
[24]
Katharina A. Zweig, Gergely Palla, Tamás Vicsek. What makes a phase transition? Analysis of the random satisfiability problem [J]. Physica A: Statistical Mechanics and its Applications, 2010 389(8) 1501-1511.
DOI: 10.1016/j.physa.2009.12.051
Google Scholar