[1]
N. K. et al. The impact of bias temperature instability for direct-tunneling ultra-thin gate oxide on mosfet scaling. Symposium on VLSI technology, p.73–74, (1999).
DOI: 10.1109/vlsit.1999.799346
Google Scholar
[2]
W. Wang, S. Yang, S. Bhardwaj, R. Vattikonda, S. Vrudhula, F. Liu, and Y. Cao. The impact of nbti on the performance of combinational and sequential circuits. Design Automation Conference, p.364–369, Jun. (2007).
Google Scholar
[3]
S. Bhardwaj, W. Wang, R. Vattikonda, Y. Cao, and S. Vrudhula. Predictive modeling of the nbti effect for reliable design. IEEE Custom Integrated Circuits Conference, pp.189-192, Sep. (2006).
DOI: 10.1109/cicc.2006.320885
Google Scholar
[4]
R. Vattikonda, W. Wang, and Y. Cao. Modeling and minimization of pmos nbti effect for robust nanometer design. Design Automation Conference, p.1047–1052, Jul. (2006).
DOI: 10.1145/1146909.1147172
Google Scholar
[5]
J. Abella , Xavier Vera , Antonio Gonzalez, Penelope: The NBTI-Aware Processor, Proceedings of the 40th Annual IEEE/ACM International Symposium on Microarchitecture, pp.85-96, December, (2007).
DOI: 10.1109/micro.2007.11
Google Scholar
[6]
B. C. Paul, K. Kang, H. Kufluoglu, M. A. Alam, and K. Roy. Temporal performance degradation under NBTI: Estimation and design for improved reliability of nanoscale circuits. ACM/IEEE Design, Automation, and Test Europe, p.780–785, (2006).
DOI: 10.1109/date.2006.244119
Google Scholar
[7]
Yu Wang. et al. Temperature-aware NBTI modeling and the impact of input vector control on performance degradation. ACM/IEEE Design, Automation, and Test Europe, pp.546-551, (2007).
DOI: 10.1109/date.2007.364650
Google Scholar
[8]
S. V. Kumar, C. H. Kim, and S. S. Sapatnekar. An analytical model for negative bias temperature instability. International Conference on Comuter-Aided Design, p.493–496, (2006).
DOI: 10.1109/iccad.2006.320163
Google Scholar
[9]
V. Sanjay et al. NBTI-aware synthesis of digital circuits. Design Automation Conference , pp.370-375, (2007).
Google Scholar
[10]
Qi. Zhenyu (Jerry), R. Stan. Mircea. NBTI resilient circuits using adaptive body biasing. GLSVLSI, pp.285-290, (2008).
DOI: 10.1145/1366110.1366179
Google Scholar
[11]
W. Wang, Z. Wei, S. Yang, Y. Cao. An Efficient Method to Identify Critical Gates under Circuit Aging. International Conference on Comuter-Aided Design, p.735–740, (2007).
DOI: 10.1109/iccad.2007.4397353
Google Scholar
[12]
H. Michael et al. SOCRATES: a highly efficient automatic test pattern generation system. IEEE Transactions on Computer-Aided Design. Vol. 7, No. 1, (1988).
Google Scholar
[13]
M.H. Schulz and E. Auth, Improved Deterministic Test Pattern Generation with Applications to Redundancy Identification, IEEE Transactions on Computer-Aided Design, Vol. 8, No. 7, pp.811-816, July (1989).
DOI: 10.1109/43.31539
Google Scholar
[14]
W. Kunz, D.K. Pradhan. Accelerated dynamic learning for test pattern generation in combinational circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, pp.684-694, (1993).
DOI: 10.1109/43.277613
Google Scholar
[15]
W. Zhao and Y. Cao. New generation of predictive technology model for sub-45nm early design explorations. Available at http: /www. eas. asu. edu/_ptm. TED, 53(11): 2816–2823, Nov. (2006).
Google Scholar
[16]
R. k. Brayton et al. A new algorithm for statistical circuit design based on quasi-Newton methods and function splitting. IEEE Transactions on Circuit and Systems, Vol. CAS-26, pp.784-794, Sep, (1979).
DOI: 10.1109/tcs.1979.1084701
Google Scholar
[17]
M. Agarwal et al. Optimized Circuit Failure Prediction for Aging: Practicality and Promise. IEEE International Test Conference, pp.1-10, Oct. (2008).
Google Scholar