Unfragile Guaranteed-Cost Control of Uncertain State-Delay Sampling System

Article Preview

Abstract:

The unfragile guaranteed-cost control problem of a class of uncertain state-delay sampled system is discussed. Applying Lyapunov method, and combining the properties of matrix inequality, the sufficient condition of robust stability is given, and the unfragile guaranteed-cost controller is designed. Finally a numerical example illustrates the effectiveness and the availability for the design.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4261-4264

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] DUGARD L, VERRIEST E I. Stability and control of Time-delay Systems [M] Berlin:Springer, (1998).

Google Scholar

[2] XU S, LAM J, YANG C. Quadratic stability and stabilization of uncertain linear discrete-time systems with state-delay [J]. Systems control Lett, 2001, vol. 43, pp: 77-84.

DOI: 10.1016/s0167-6911(00)00113-4

Google Scholar

[3] YEE J S, YANG G H, WANG J L. Non-fragile guaranteed Cost control for discrete-time uncertain linear systems. [J]. Int J. Systems Sci, 2001, vol. 32, pp: 845-853.

DOI: 10.1080/00207720117595

Google Scholar

[4] WU Junfeng, WANG Qiang , CHEN Shanben. Robust Stability for Sampled-Data Systems[J]. Control Theory & Applications, 2001, vol. 18, pp: 99-102.

Google Scholar

[5] WU Junfeng, WANG Qiang, CHEN Shanben. Robust stability of sampling system for a class of non-structural perturation models[J]. Journal of Harbin Institute Of Technology, 2001, vol. 33, pp: 681-685.

Google Scholar

[6] WU Junfeng, WANG Qiang , CHEN Shanben. Robust control of a class of sampled-data systems with structured uncertainty[J]. Control and Decision, 2002, vol. 17, pp: 567-570.

Google Scholar

[7] WU Junfeng, LIU Shangwu, HUANG Libo. Robust State Feedback Control of Uncertain Data-Sampled System with Pole Constrain [J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, Vol. 38, pp: 1-4.

Google Scholar

[8] Keel L H , Bhattacharyya S P. Robust , fragile , or optimal [J]. IEEE Trans Automatic Control, 1997, Vol. 42, pp: 2678-2683.

Google Scholar

[9] GUAN Xinping, WU Jing, LONG Chengnian. Resilient guaranteed cost controller design for uncertain time-delayed systems [J]. Control Theory & Applications, 2003, vol. 20, pp: 619-622.

Google Scholar

[10] WU Jun-feng , ZHANG Ming-jun , CHEN shan-ben . Robust stability for the perturbed sampled-data systems. [J]. Journal of Harbin Institute of Technology, 2006, Vol. 13, pp: 707-710.

Google Scholar

[11] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities in System and Control Theory. Philadelphia: SIAM (1994).

DOI: 10.1137/1.9781611970777

Google Scholar

[12] I. R. Petersen and C. V. Hollot. A Riccati equation approach to the stabilization of uncertain linear systems. Automatica, 22(4): 397-411, (1986).

DOI: 10.1016/0005-1098(86)90045-2

Google Scholar