Microtubules Dynamics Regulates Mesocotyl Elongation in Rice

Article Preview

Abstract:

Mesocotyl elongation in rice is essential for seedling emergence. Our previous screening identified weedy rice accessions (Oryza sativa f. spontanea L.) (WR04-6) with unusual long mesocotyl. In this study, using rice cultivar Akihikari (Oryza sativa, subspecies japonica) as control, we observed that weedy rice accessions display more extensive microtubules (MTs) depolymerization in the early stage of mesocotyl elongation. At the end of mesocotyl elongation, the predominant MTs in weedy rice are transversely oriented, while, Akihikari has oblique MTs arrays.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

4277-4280

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Chung Nam-Jin. Elongation habit of mesocotyls and coleoptiles in weedy rice with high emergence ability in direct-seeding on dry paddy fields. Crop Pasture Sci, 2010, 61: 911-917.

DOI: 10.1071/cp10099

Google Scholar

[2] AMONSILPA, COLLINS, WELLS, DILDAY , MGONJA. Mesocotyl and Celeoptile Elongation in Rice: Linkage or Pleitropism? Crop science, 1990, 30: 815-818.

DOI: 10.2135/cropsci1990.0011183x003000040010x

Google Scholar

[3] Tang Liang, Ma Dian-rong, Xu Zheng-jin, Deng Hua-feng, Chen Wen-fu, Yuan Long-ping. Utilization of weedy rice for development of japonica hybrid rice (Oryza sativa L. ). Plant Sci., 2011, 180: 733-740.

DOI: 10.1016/j.plantsci.2011.02.002

Google Scholar

[4] Wang Ying, Ma Dianrong , Chen Wen-fu. Pilot study on mesocotyl elongation characters of northern weedy rice China Rice, 2008, 14: 47-50.

Google Scholar

[5] SAWERS, LINLEY, FARMER, HANLEY, COSTICH, TERRY, BRUTNELL. Elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiol, 2002, 130: 155-163.

DOI: 10.1104/pp.006411

Google Scholar

[6] CONA, CENCI, CERVELLI, FEDERICO, MARIOTTINI, MORENO, ANGELINI. Polyamine oxidase, a hydrogen peroxide-producing enzyme, is up-regulated by light and down-regulated by auxin in the outer tissues of the maize mesocotyl. Plant Physiol, 2003, 131: 803-813.

DOI: 10.1104/pp.011379

Google Scholar

[7] NICK, FURUYA. Phytochrome dependent decrease of gibberellin-sensitivity. Plant Growth Regul, 1993, 12: 195-206.

DOI: 10.1007/bf00027199

Google Scholar

[8] Zhang Zheng, Zhang Yi, Tan He-xin, Wang Ying, Li Gang, Liang Wang-qi, Yuan Zheng, Hu Jian-ping, Ren Hai-yun, Zhang Da-bing. RICE MORPHOLOGY DETERMINANT encodes the type II formin FH5 and regulates rice morphogenesis. Plant Cell, 2011, 23: 681-700.

DOI: 10.1105/tpc.110.081349

Google Scholar

[9] HOWARD, HYMAN. Dynamics and mechanics of the microtubule plus end. Nature, 2003, 422: 753-758.

DOI: 10.1038/nature01600

Google Scholar

[10] Wang Xia, Zhu Lei, Liu Bao-quan, Wang Che, Jin Li-feng, Zhao Qian, Yuan Ming. Arabidopsis MICROTUBULE-ASSOCIATED PROTEIN18 functions in directional cell growth by destabilizing cortical microtubules. Plant cell, 2007, 19: 877-889.

DOI: 10.1105/tpc.106.048579

Google Scholar

[11] Hyun-Sook Lee, Kazuhiro Sasaki, Atsushi Higashitani, Sang-Nag Ahn, Tadashi Sato. Mapping and characterization of quantitative trait loci for mesocotyl elongation in rice (Oryza sativa L. ). Rice, 2012, 5: 13.

DOI: 10.1186/1939-8433-5-13

Google Scholar

[12] de Forges H, Bouissou A, Perez F. Interplay between microtubule dynamics and intracellular organization. Int J Biochem Cell Biol, 2011, 44: 266-274.

DOI: 10.1016/j.biocel.2011.11.009

Google Scholar

[13] Albina Abdrakhamanova, Qi Yan Wang, Ludmila Khokhlova andPeter Nick . Is microtubule disassembly a trigger for cold acclimation? Plant Cell Physiol , 2003, 44: 676-686.

DOI: 10.1093/pcp/pcg097

Google Scholar

[14] Elizabeth Faris Crowell, Hélène Timpano, Thierry Desprez, Tiny Franssen-Verheijen, Anne-Mie Emons, Herman Höfte andSamantha Vernhettes. Differential regulation of cellulose orientation at the inner and outer face of epidermal cells in the Arabidopsis hypocotyl. Plant Cell, 2011, 23: 2592-2605.

DOI: 10.1105/tpc.111.087338

Google Scholar