[1]
Sangyadong. Exact solution portfolio KdV-Burgers equation . Chinese Journal of Engineering Mathematics, 2000; 17(4): 99–103.
Google Scholar
[2]
Sun Y. H, Ma Z. M, Li Y. Explicit Solutions for Generalized (2+1)-Dimensional Nonlinear Zakharov–Kuznetsov Equation. Commun. Theor. Phys. (Beijing, China), 2010; 54(3): 397–400.
DOI: 10.1088/0253-6102/54/3/03
Google Scholar
[3]
ChenDengYuan. Soliton Introduction . Beijing, Science Press, (2008).
Google Scholar
[4]
Guo Yucui. Introduction to Nonlinear Partial Differential Equations . Beijing, Tsinghua University Press, (2008).
Google Scholar
[5]
Lai S. Y, Yin J, Wu Y.H. Different physical structures of solutions for two related Zakharov- Kuznetsov equations. Phys. Lett. A, 2008; 373: 6461-6468.
DOI: 10.1016/j.physleta.2008.08.071
Google Scholar
[6]
F. Moritake, Ruanhang Yu. Variable coefficient KdV equation and equation with variable coefficients MKdV infinitely many conservation laws . Physics,1992; 41(2): 182-187.
Google Scholar
[7]
Li Desheng, Zhang Hongqing improved tanh function method and the general variable coefficient KdV equation and MKdV new exact solutions . Physics, 2003; 52 (7): 1569-1572.
Google Scholar
[8]
Fan E.G. Travelling wave solutions in terms of special functions for nonlinear coupled evolution systems. Phys. Lett. A, 2002; 300: 243–249.
DOI: 10.1016/s0375-9601(02)00776-4
Google Scholar
[9]
Li Zhibin traveling wave solutions of nonlinear equations of mathematical physics . Beijing, Science Press, 2007;. 148-149.
Google Scholar