[1]
J. Cao. Global asymptotic stability of neural networks with transmission delays [J]. International Journal of System Science, 2000 31(10)1313-1316.
DOI: 10.1080/00207720050165807
Google Scholar
[2]
Y. He, G. Liu, and D. Rees. New delay-dependent stability criteria for neural networks with time-varying delay [J]. IEEE Transactions on Neural Networks, 2007 18(1) 310-314.
DOI: 10.1109/tnn.2006.888373
Google Scholar
[3]
T. Li and X. L. Ye. Improved stability criteria of neural networks with time-varying delays: An augmented LKF approach [J]. Neurocomputing, 2010 73(4-6)1038-1047.
DOI: 10.1016/j.neucom.2009.10.001
Google Scholar
[4]
H. Zhang, Z. Liu, G. Huang, and Z. Wang. Novel weighting-delaybased stability criteria for recurrent neural networks with time-varying delay [J]. IEEE Transactions on Neural Networks, 2010 21(1) 91-106.
DOI: 10.1109/tnn.2009.2034742
Google Scholar
[5]
S. Xiao and X. Zhang, New globally asymptotic stability criteria for delayed cellular neural networks [J]. IEEE Transactions on Circuits and Systems II, 2009 56 (8) 659-663.
DOI: 10.1109/tcsii.2009.2024244
Google Scholar
[6]
X. Zhang and Q. Han, New Lyapunov-Krasovskii functionals for global asymptotic stability of delayed neural networks [J]. IEEE Transactions on Neural Networks, 2009 20(3) 533-539.
DOI: 10.1109/tnn.2009.2014160
Google Scholar
[7]
S. Boyd, V. Balakrishnan, E. Feron, and L. El Ghaoui. Linear Matrix Inequalities in Systems and Control[M], SIMA, Philadelphia, Pa, USA, July (1994).
DOI: 10.1137/1.9781611970777
Google Scholar
[8]
P.G. Park, J.W. Ko, and C. Jeong. Reciprocally convex approach to stability of systems with time-varying delays [J]. Automatica, 2011 47(1) 235-238.
DOI: 10.1016/j.automatica.2010.10.014
Google Scholar