Robustness of Autocatalytic Set in a Model of Evolving Network

Article Preview

Abstract:

Complex networks can describe a variety of systems in biology and chemistry, especially the systems containing the autocatalytic set (ACS). However, the robustness of the ACS has not been explored in details. Now we investigate the evolution process to reveal the robustness of the ACS. By defining two variables on the dependency of every node, we find that the ratios of the fraction with maximum and minimum value are invariable. Moreover, the robustness of the ACS depends on the fraction with maximum value extremely.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-215

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Albert and A. -L. Barabasi. Rev. Mod. Phys. Vol. 74 (2002), pp.47-97.

Google Scholar

[2] D.J. Watts and S, H, Strogatz. Nature. Vol. 393 (1998), pp.440-442.

Google Scholar

[3] R.J. Williams and N.D. Martinez. Mature. Vol. 404 (2000), pp.180-183.

Google Scholar

[4] J. Camacho, R. Guimera and L.A.N. Amaral. Phys. Rev. Lett. Vol. 88 (2002), p.228102.

Google Scholar

[5] D.A. Fell and A. Wagner. Nature Biotechnology. Vol. 18 (2000), pp.1121-1122.

Google Scholar

[6] H. Jeong, B. Tombor, A. Albert, Z.N. Oltvai and A. -L. Barabasi. Nature. Vol. 407 (2000), pp.651-654.

Google Scholar

[7] G.F. Joyce. Nature. Vol. 338 (1989), pp.217-223.

Google Scholar

[8] P.F. Stadler, W. Fontana and J.H. Miller. Physica D: Nonlinear Phenomena. Vol. 63 (1993), pp.378-392.

Google Scholar

[9] P. Bak and K. Sneppen. Phys. Rev. Lett. Vol. 71 (1993), pp.4083-4086.

Google Scholar

[10] S. Jain and S. Krishna. Phys. Rev. Lett. Vol. 81 (1998), pp.5684-5687.

Google Scholar

[11] S. Jain and S. Krishna. Phys. Rev. E. Vol. 65 (2002), p.026103.

Google Scholar

[12] S. Jain and S. Krishna. Proc. Natl. Acad. Vol. 98 (2001), pp.543-547.

Google Scholar

[13] P. Erdos and A. Renyi. Publ. Math. Inst. Hungar. Acad. Sci. Vol. 5 (1960), p.17.

Google Scholar

[14] R. Zhang, W. Wei, B. Guo, Y. Zhang and Z. Zheng. Physica A. Vol. 392 (2013), pp.1232-1245.

Google Scholar

[15] D. Stauffer and A. Aharony: Introduction to percolation Theory (Taylor & Francis, London, ed. 2, 1994).

Google Scholar

[16] N. Barkai and S. Leibler. Nature. Vol. 387 (1997), pp.913-917.

Google Scholar