On General Number Field Sieve and its Polynomial Selection

Article Preview

Abstract:

This paper analyzes the algorithm of general number field sieve and suggesting some ofits solving in the problem of larger integers factorization. And a design of its implementation via thelibrary GMP for polynomial selection is discussed. Our work has the advantages of easy extensionsto various applications such as RSA, Discrete logarithm problems, Primality testing and so on.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

250-256

Citation:

Online since:

February 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] RSA, www. thersa. org.

Google Scholar

[2] Lenstra, A. K., Lenstra, H. W. Jr. , The Development of the Number Field Sieve, Berlin: SpringerVerlag, (1993).

Google Scholar

[3] Andrea Pellegrini, Valeria Bertacco, Todd Austin, Fault-Based Attack of RSA Authentication, (2010).

Google Scholar

[4] Gordon D. M., Discrete logarithms in GF(p) Using the Number Held Sieve, SIAM J. Discrete Math. 6 (1993), 124-138.

DOI: 10.1137/0406010

Google Scholar

[5] Adleman L. M., Factoring numbers using singular integers, Proc, 23rd Annual ACM Symp on Theory of Computing (STOC), New Orleans, May 6-8, 1991, 64-71.

DOI: 10.1145/103418.103432

Google Scholar

[6] Buchman J., Loho J., Zayer J., An Implementation of Number Field Sieve, in Douglas R. Stinson (Ed. ), Advances in Cryptology-CRYPT0'93, 13th Annual International Cryptology Conference Santa Barbara, California, USA Proceedings August 22-26, 1993, pp.159-165, Berlin: SpringerVerlag, (1994).

DOI: 10.1007/3-540-48329-2

Google Scholar

[7] kmGNFS, kmGNFS-A General Number Field Sieve (GNFS) Implementation, kmgnfs. cti. gr.

Google Scholar

[8] Lenstra A.K. , Lenstra H.W., Jr., Manasse M.S., Pollard J.M., The Factorization of the Ninth Fermat Number, Math. Comp. 61 (1993).

DOI: 10.1090/s0025-5718-1993-1182953-4

Google Scholar

[9] Marije Elkenbracht-Huizing, An Implementation of the Number Field Sieve, Experimental Mathematics, Vol. 5 (1996), No. 3.

DOI: 10.1080/10586458.1996.10504590

Google Scholar

[10] Sashisu Bajracharya, Deapesh Misra, Kris Gaj, Tarek El-Ghazawi, Reconfigurable Hardware Implementation of Mesh Routing in the Number Field Sieve Factorization.

DOI: 10.1109/fpt.2004.1393277

Google Scholar

[11] Paul Zimmermann, CADO-NFS: An Implementation of The Number Field Sieve, (2008).

Google Scholar

[12] Thorsten Kleijung, On Polynomial Selection for the Genral Number Number Fieve Sieve, Mathematics of Computation Volume 75, Number 256, October 2006, Pages 2037�C2047.

DOI: 10.1090/s0025-5718-06-01870-9

Google Scholar

[13] THORSTEN KLEINJUNG, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, et al, Factorization of a 768-bit RSA modulus, (2010).

Google Scholar

[14] Namhun Koo, Gooc Hwa Jo, Soonhak Kwon, On Nonlinear Polynomial Selection and Geometric Progression (modN) for Number Field Sieve, preprint, (2011).

Google Scholar

[15] T. Prest, and P. Zimmermann, Non-linear Polynomial Selection for the Number field Sieve, (2010).

Google Scholar

[16] Cado-NFS, cado-nfs. gforge. inria. fr, Berlin: Springer-Verlag, (1993).

Google Scholar

[17] Min yang, Qingshu Meng, Zhangyi Wang, Lina Wang, Huanguo Zhang, Polynomial Selection for the Number Field Sieve in Geometric View, Cryptology ePrint Archive: Report 2013/583.

Google Scholar

[18] Jeff Gilchrist, Beginners Guide to NFS factoring using GGNFS and MSIEVE with the factmsieve. pl perl script, gilchrist. ca.

Google Scholar

[19] Sage, Quadratic Sieve, www. sagemath. org.

Google Scholar

[20] Laurence T. Yang, Li Xu, Man Lin, John Quinn, A Parallel GNFS Algorithm Based on a Reliable Look-Ahead Block Lanczos Method for Integer Factorization, in: Embedded and Ubiquitous Computing Lecture Notes in Computer Science Volume 4096, 2006, pp.110-120.

DOI: 10.1007/11802167_13

Google Scholar

[21] Greg Childers, Factorization of a 1061-bit number by the Special Number Field Sieve, (2012).

Google Scholar