[1]
RSA, www. thersa. org.
Google Scholar
[2]
Lenstra, A. K., Lenstra, H. W. Jr. , The Development of the Number Field Sieve, Berlin: SpringerVerlag, (1993).
Google Scholar
[3]
Andrea Pellegrini, Valeria Bertacco, Todd Austin, Fault-Based Attack of RSA Authentication, (2010).
Google Scholar
[4]
Gordon D. M., Discrete logarithms in GF(p) Using the Number Held Sieve, SIAM J. Discrete Math. 6 (1993), 124-138.
DOI: 10.1137/0406010
Google Scholar
[5]
Adleman L. M., Factoring numbers using singular integers, Proc, 23rd Annual ACM Symp on Theory of Computing (STOC), New Orleans, May 6-8, 1991, 64-71.
DOI: 10.1145/103418.103432
Google Scholar
[6]
Buchman J., Loho J., Zayer J., An Implementation of Number Field Sieve, in Douglas R. Stinson (Ed. ), Advances in Cryptology-CRYPT0'93, 13th Annual International Cryptology Conference Santa Barbara, California, USA Proceedings August 22-26, 1993, pp.159-165, Berlin: SpringerVerlag, (1994).
DOI: 10.1007/3-540-48329-2
Google Scholar
[7]
kmGNFS, kmGNFS-A General Number Field Sieve (GNFS) Implementation, kmgnfs. cti. gr.
Google Scholar
[8]
Lenstra A.K. , Lenstra H.W., Jr., Manasse M.S., Pollard J.M., The Factorization of the Ninth Fermat Number, Math. Comp. 61 (1993).
DOI: 10.1090/s0025-5718-1993-1182953-4
Google Scholar
[9]
Marije Elkenbracht-Huizing, An Implementation of the Number Field Sieve, Experimental Mathematics, Vol. 5 (1996), No. 3.
DOI: 10.1080/10586458.1996.10504590
Google Scholar
[10]
Sashisu Bajracharya, Deapesh Misra, Kris Gaj, Tarek El-Ghazawi, Reconfigurable Hardware Implementation of Mesh Routing in the Number Field Sieve Factorization.
DOI: 10.1109/fpt.2004.1393277
Google Scholar
[11]
Paul Zimmermann, CADO-NFS: An Implementation of The Number Field Sieve, (2008).
Google Scholar
[12]
Thorsten Kleijung, On Polynomial Selection for the Genral Number Number Fieve Sieve, Mathematics of Computation Volume 75, Number 256, October 2006, Pages 2037�C2047.
DOI: 10.1090/s0025-5718-06-01870-9
Google Scholar
[13]
THORSTEN KLEINJUNG, Kazumaro Aoki, Jens Franke, Arjen K. Lenstra, et al, Factorization of a 768-bit RSA modulus, (2010).
Google Scholar
[14]
Namhun Koo, Gooc Hwa Jo, Soonhak Kwon, On Nonlinear Polynomial Selection and Geometric Progression (modN) for Number Field Sieve, preprint, (2011).
Google Scholar
[15]
T. Prest, and P. Zimmermann, Non-linear Polynomial Selection for the Number field Sieve, (2010).
Google Scholar
[16]
Cado-NFS, cado-nfs. gforge. inria. fr, Berlin: Springer-Verlag, (1993).
Google Scholar
[17]
Min yang, Qingshu Meng, Zhangyi Wang, Lina Wang, Huanguo Zhang, Polynomial Selection for the Number Field Sieve in Geometric View, Cryptology ePrint Archive: Report 2013/583.
Google Scholar
[18]
Jeff Gilchrist, Beginners Guide to NFS factoring using GGNFS and MSIEVE with the factmsieve. pl perl script, gilchrist. ca.
Google Scholar
[19]
Sage, Quadratic Sieve, www. sagemath. org.
Google Scholar
[20]
Laurence T. Yang, Li Xu, Man Lin, John Quinn, A Parallel GNFS Algorithm Based on a Reliable Look-Ahead Block Lanczos Method for Integer Factorization, in: Embedded and Ubiquitous Computing Lecture Notes in Computer Science Volume 4096, 2006, pp.110-120.
DOI: 10.1007/11802167_13
Google Scholar
[21]
Greg Childers, Factorization of a 1061-bit number by the Special Number Field Sieve, (2012).
Google Scholar