Analysis of Gaussian-Hermite Moment Invariants on Image Geometric Transformation

Article Preview

Abstract:

Gaussian-Hermite moments and their invariants have been widely used in image processing and pattern recognition. The moments are strictly invariant for the continuous function. However, the digital images are discrete. The image function and the moment imvariants may change during image geometric transformation. To address this problem, an analysis with respect to the fluctuation of moment invariants on image geometric transformation is presented. The guidance is provided as well to minimizing the fluctuation of the Gaussian-Hermite moments.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

557-561

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Li, J., & Allinson, N. M. (2008). A comprehensive review of current local features for computer vision. Neurocomputing, 71(10), 1771-1787.

DOI: 10.1016/j.neucom.2007.11.032

Google Scholar

[2] Hu, M. K. (1962). Visual pattern recognition by moment invariants. Information Theory, IRE Transactions on, 8(2), 179-187.

DOI: 10.1109/tit.1962.1057692

Google Scholar

[3] Teague, M. R. (1980). Image analysis via the general theory of moments. JOSA, 70(8), 920-930.

Google Scholar

[4] Shen, J. (1997). Orthogonal Gaussian-Hermite moments for image characterization. Proc. SPIE, Intelligent Robots and Computer Vision XVI: Algorithms Techniques, Active Vision, and Materials Handling, Pittsburgh, USA, 875-894.

DOI: 10.1117/12.290295

Google Scholar

[5] Yap, P. T., Paramesran, R., & Ong, S. H. (2003). Image analysis by Krawtchouk moments. Image Processing, IEEE Transactions on, 12(11), 1367-1377.

DOI: 10.1109/tip.2003.818019

Google Scholar

[6] Zhu, H., Shu, H., Liang, J., Luo, L., & Coatrieux, J. L. (2007). Image analysis by discrete orthogonal Racah moments. Signal Processing, 87(4), 687-708.

DOI: 10.1016/j.sigpro.2006.07.007

Google Scholar

[7] Zhu, H., Shu, H., Zhou, J., Luo, L., & Coatrieux, J. L. (2007). Image analysis by discrete orthogonal dual Hahn moments. Pattern Recognition Letters, 28(13), 1688-1704.

DOI: 10.1016/j.patrec.2007.04.013

Google Scholar

[8] Yang, B., Li, G., Zhang, H., & Dai, M. (2011). Rotation and translation invariants of Gaussian–Hermite moments. Pattern recognition letters, 32(9), 1283-1298.

DOI: 10.1016/j.patrec.2011.03.012

Google Scholar