A New Local Self-Similarity Descriptor Based on Structural Similarity Index

Article Preview

Abstract:

The local self-similarity descriptor is a kind of important image or video local feature description method. It is often used for detection, identification and recognition. In this paper we propose a new local self-similarity descriptor based on structural similarity (SSIM) index. It is showed in this paper that the SSIM Index give very different answers to the question of how self-similar local patches really are. For a given image we compute SSIM index distances between representations for all pairs of spatial-patches and store the results in a Self-Similarity Matrix (SSM) defined as the local feature descriptor. This new method is easily extended to the wavelet representation of images. Comparative evaluation of local feature descriptor with previous methods demonstrates improved performance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

615-622

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dj.M. Maric, P.F. Meier and S.K. Estreicher: Mater. Sci. Forum Vol. 83-87 (1992), p.119.

Google Scholar

[2] M.A. Green: High Efficiency Silicon Solar Cells (Trans Tech Publications, Switzerland 1987).

Google Scholar

[3] Y. Mishing, in: Diffusion Processes in Advanced Technological Materials, edtied by D. Gupta Noyes Publications/William Andrew Publising, Norwich, NY (2004), in press.

Google Scholar

[4] G. Henkelman, G. Johannesson and H. Jónsson, in: Theoretical Methods in Condencsed Phase Chemistry, edited by S.D. Schwartz, volume 5 of Progress in Theoretical Chemistry and Physics, chapter, 10, Kluwer Academic Publishers (2000).

Google Scholar

[5] R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003).

Google Scholar

[6] P.G. Clem, M. Rodriguez, J.A. Voigt and C.S. Ashley, U.S. Patent 6, 231, 666. (2001).

Google Scholar

[7] Information on http: /www. weld. labs. gov. cn.

Google Scholar

[1] Moeslund, T., Hilton, A., Krouger, V.: A survey of advances in vision-based human motion capture and analysis, CVIU, Vol. 104, No. 2 (2006), pp.90-126.

DOI: 10.1016/j.cviu.2006.08.002

Google Scholar

[2] Wang, L., Hu, W., Tan, T.: Recent developments in human motion analysis, Pattern Recognition, Vol. 36, No. 3(2003), pp.585-601.

DOI: 10.1016/s0031-3203(02)00100-0

Google Scholar

[3] David G. Lowe: Distinctive Image Features from Scale-invariant Keypoints, International Journal of Computer Vision, Vol. 60, No. 2(2004), pp.91-110.

DOI: 10.1023/b:visi.0000029664.99615.94

Google Scholar

[4] Krystian Mikolajczyk, Cordelia Schmid: A Performance Evaluation of Local Descriptors, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 27, No. 10(2005), pp.1615-1630.

DOI: 10.1109/tpami.2005.188

Google Scholar

[5] Belongie, S., Malik, J., Puzicha, J.: Shape Matching and Object Recognition Using Shape Contexts, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 24, No. 4(2002), pp.509-522.

DOI: 10.1109/34.993558

Google Scholar

[6] Dalal, N., Triggs, B. : Histograms of Oriented Gradients for Human Detection, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(2005), pp.886-893.

DOI: 10.1109/cvpr.2005.177

Google Scholar

[7] Shechtman, E., Irani, M.: Matching Local Self-Similarities across Images and Videos, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition(2007), pp.1-8.

DOI: 10.1109/cvpr.2007.383198

Google Scholar

[8] K. Mikolajczyk and C. Schmid: A performance evaluation of local descriptors, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 27, No. 10(2005), p.1615–1630.

DOI: 10.1109/tpami.2005.188

Google Scholar

[9] Shechtman, E., Irani, M.: Matching local self-similarities across images and videos, In: Proc. CVPR(2007), pp.1-8.

DOI: 10.1109/cvpr.2007.383198

Google Scholar

[10] Benabdelkader, C., Cutler, R., Davis, L.: Gait recognition using image self-similarity, EURASIP J. Appl. Signal Process, Vol. 4(2004), pp.572-585.

DOI: 10.1155/s1110865704309236

Google Scholar

[11] Cutler, R., Davis, L.: Robust real-time periodic motion detection, analysis, and applications, IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 22, No. 8 (2000), pp.781-796.

DOI: 10.1109/34.868681

Google Scholar

[12] Carlsson, S.: Recognizing walking people, In: Proc. ECCV(2000), pp.472-486.

Google Scholar

[13] I. N. Junejo, E. Dexter, I. Laptev and P. Perez: Cross-View Action Recognition from Temporal Self-Similarities, In: Proc. ECCV(2008), Vol. 2, pp.293-306.

DOI: 10.1007/978-3-540-88688-4_22

Google Scholar

[14] P. Huang, A. Hilton, J. Starck: Automatic 3D Video Summarization: Key Frame Extraction from Self-Similarity, 3DPVT'08(2008), pp.220-230.

Google Scholar

[15] Eckman, J.P., et. al.: Recurrence Plots of Dynamical Systems, in Europhys. Lett. Vol. 4(1987), p.973.

Google Scholar

[16] Cutler, R. and Davis, L: Robust Real-Time Periodic Motion Detection, Analysis, and Applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 8(2000), pp.781-796.

DOI: 10.1109/34.868681

Google Scholar

[17] T. Deselaers and V. Ferrari: Global and Efficient Self-Similarity for Object Classification and Detection, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, (2010), pp.1633-1640.

DOI: 10.1109/cvpr.2010.5539775

Google Scholar

[18] Z. Wang and A.C. Bovik: A universal image quality index, Signal Processing, Vol. 9, No. 3(2002), p.81–84.

Google Scholar

[19] Lele, S.: Euclidean distance matrix analysis (EDMA): Estimation of mean form and mean form difference, Mathematical Geology, Vol. 25, No. 5(1993), pp.573-602.

DOI: 10.1007/bf00890247

Google Scholar

[20] E. W. Dijkstra: A note on two problems in connexion with graphs, Numerische Mathematik, Vol. 1, No. 1(1959), p.269–271.

DOI: 10.1007/bf01386390

Google Scholar