[1]
Jorge Nocedal, Stephen Wright. Numerical Optimization. 2nd ed. New York: Springer-Verlag, (2006).
Google Scholar
[2]
Levy A. V., Gomez S. The Tunneling method applied to global optimization. Numerical optimization, SIAM, Boggs P T, Byrd R H and Schnabel R B (eds), (1985), 213-244.
Google Scholar
[3]
Fan Lei, Wang Yuping. A minimum-elimination-escape memetic algorithm for global optimization: MEEM. International Journal of Innovative Computing, Information and Control, (2012), 8(5B): 3689-3704.
Google Scholar
[4]
Liang J J, Suganthan P N, Deb K. Novel composition test functions for numerical global optimization. Proceedings of IEEE International Swarm Intelligence Symposium, Messina, Italy, (2005): 68~75.
DOI: 10.1109/sis.2005.1501604
Google Scholar
[5]
Mandelbrot B B. The Fractal Geometry of Nature. New York: W H Freeman, (1982).
Google Scholar
[6]
João B. Florindo, Odemir M. Bruno. Closed Contour Fractal Dimension Estimation by the Fourier Transform. Chaos Solitons & Fractals (2012); 44(10): 851-861.
DOI: 10.1016/j.chaos.2011.07.008
Google Scholar
[7]
Mahmoud R. Shaghaghian. Fractal dimension: an index to quantify parameters in Genetic Algorithms. World Academy of Science, Engineering and Technology, (2010), 38: 792-794.
Google Scholar
[8]
Kantelhardt J W, Zschiegner S A, Koscielny-Bunde Eva et al. Multifractal detrended fluctuation analysis of nonstationary time series. Physica A (2002), 316(1-4): 87-114.
DOI: 10.1016/s0378-4371(02)01383-3
Google Scholar
[9]
P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y. -P. Chen, A. Auger, and S. Tiwari, Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization, Nanyang Technol. Univ., Singapore, Tech. Rep. KanGAL #2005005, May 2005, IIT Kanpur, India.
Google Scholar
[10]
Yong Wang, Zixing Cai, Qingfu Zhang: Differential Evolution With Composite Trial Vector Generation Strategies and Control Parameters. IEEE Trans. Evolutionary Computation, (2011), 15(1): 55-66.
DOI: 10.1109/tevc.2010.2087271
Google Scholar