[1]
M. Negnevitsky, in: Artificial Intelligence: A Guide to Intelligent Systems, 2nd ed, Addison Wesley (2005).
Google Scholar
[2]
R.A. Gupta, R. Kumar and A.K. Bansal: Artificial Intelligence Applications in Permanent Magnet Brushless DC Motor Drives. Artif Intell Rev Vol. 33 (2010), p.175–186.
DOI: 10.1007/s10462-009-9152-3
Google Scholar
[3]
T. Wildi, in: Electrical Machines, Drives, and Power Systems, 6th ed, Prentice Hall (2005).
Google Scholar
[4]
Information on http: /en. wikipedia. org/wiki/Synchronous_motor.
Google Scholar
[5]
C. Elmas, O. Ustun and H.H. Sayan: A Neuro-fuzzy Controller for Speed Control of a Permanent Magnet Synchronous Motor Drive. Expert Systems with Applications Vol. 34 (2008), pp.657-664.
DOI: 10.1016/j.eswa.2006.10.002
Google Scholar
[6]
C. Elmas and O. Ustun: A Hybrid Controller for the Speed Control of a Permanent Magnet Synchronous Motor Drive. Control Engineering Practice Vol. 16 (2008), pp.260-270.
DOI: 10.1016/j.conengprac.2007.04.016
Google Scholar
[7]
S.V. Ustun and M. Demirtas: Optimal Tuning of PI Coefficients by using Fuzzy-genetic for V/f Controlled Induction Motor. Expert Systems with Applications Vol. 34 (2008), p.2714–2720.
DOI: 10.1016/j.eswa.2007.05.029
Google Scholar
[8]
R.K. Ursem and P. Vadstrup: Parameter Identification of Induction Motors using Stochastic Optimization Algorithms. Applied Soft Computing Vol. 4 (2004), p.49–64.
DOI: 10.1016/j.asoc.2003.08.002
Google Scholar
[9]
A.H. Isfahani and S. Vaez-Zadeh: Design Optimization of a Linear Permanent Magnet Synchronous Motor for Extra Low Force Pulsations. Energy Conversion and Management Vol. 48 (2007), p.443–449.
DOI: 10.1016/j.enconman.2006.06.022
Google Scholar
[10]
R-F. Fung, C-L. Chiang and G-C. Wu: System Identification of a Pick-and-Place Mechanism Driven by a Permanent Magnet Synchronous Motor. Applied Mathematical Modelling Vol. 34 (2010), p.2323–2335.
DOI: 10.1016/j.apm.2009.10.040
Google Scholar
[11]
D. Bochnia, W. Hofmann and H. Hupe: Ninth lnternational Conference on Electrical Machines and Drives, Conference Publication No. 468, ©IEE (1999), pp.297-301.
Google Scholar
[12]
J. Juarez-Guerrero, S. Munoz-Gutierrez and W.W.M. Cuevas: Design of a Walking Machine Structure using Evolutionary Strategies. IEEE (1998), pp.1427-1432.
DOI: 10.1109/icsmc.1998.728084
Google Scholar
[13]
J. Perl: Artificial Neural Networks in Motor Control Research. Clinical Biomechanics Vol. 19 (2004), p.873–875.
DOI: 10.1016/j.clinbiomech.2004.04.010
Google Scholar
[14]
C. Zhang, H. Liu, S. Chen and F. Wang: Application of Neural Networks for Permanent Magnet Synchronous Motor Direct Torque Control. Journal of Systems Engineering and Electronics Vol. 19 No. 3 (2008), pp.555-561.
DOI: 10.1016/s1004-4132(08)60120-6
Google Scholar
[15]
J. Zare: Vector Control of Permanent Magnet Synchronous Motor with Surface Magnet Using Artificial Neural Networks. Universities Power Engineering Conference, 2008. UPEC 2008. 43rd International (2008), p.1–4.
DOI: 10.1109/upec.2008.4651647
Google Scholar
[16]
T.D. Batzel and K.Y. Lee: An Approach to Sensorless Operation of the Permanent-magnet Synchronous Motor using Diagonally Recurrent Neural Networks. IEEE Trans. Energy Convers. Vol. 18 (2003), p.100–106.
DOI: 10.1109/tec.2002.808386
Google Scholar
[17]
F-J. Lin and R-J. Wai: Robust Recurrent Fuzzy Neural Network Control for Linear Synchronous Motor Drive System. Neurocomputing Vol. 50 (2003), pp.365-390.
DOI: 10.1016/s0925-2312(02)00572-6
Google Scholar
[18]
J. Kabziński: Fuzzy Modeling of Disturbance Torques/Forces in Rotational/Linear Interior Permanent Magnet Synchronous Motors. EPE (2005), pp.1-10.
DOI: 10.1109/epe.2005.219566
Google Scholar
[19]
H. Yousefi, M. Hirvonen, H. Handroos and A. Soleymani: Application of Neural Network in Suppressing Mechanical Vibration of Permanent Magnet Linear Motor. Control Engineering Practice Vol. 16 (2008), pp.787-797.
DOI: 10.1016/j.conengprac.2007.08.003
Google Scholar
[20]
Y.J. Lee, J.W. Lee, H.C. Cho, K.W. Koo and K.S. Lee: Positioning Control of Linear Motor-Based Container Transfer System with Varying Weight. 2008 Second International Conference on Future Generation Communication and Networking Symposia (2008).
DOI: 10.1109/fgcns.2008.125
Google Scholar
[21]
C.A. Borghi, D. Casadei, M. Fabbri, and G. Serra: Reduction of the Torque Ripple in Permanent Magnet Actuators by a Multi-Objective Minimization Technique. IEEE Transactions on Magnetics, Vol. 34 No. 5 (1998), pp.2869-2872.
DOI: 10.1109/20.717668
Google Scholar
[22]
D-Y. Jeon, D. Kim, S-y. Hahn and G. Cha: Optimum Design of Linear Synchronous Motor using Evolution Strategy Combined with Stochastic FEM. IEEE Transactions on Magnetics Vol. 35 No. 3, (1999), pp.1734-1737.
DOI: 10.1109/20.767364
Google Scholar
[23]
R-M. Jan, C-S. Tseng and R-J Liu: Robust PID Control Design for Permanent Magnet Synchronous Motor: A Genetic Approach. Electric Power Systems Research Vol. 78 (2008), p.1161–1168.
DOI: 10.1016/j.epsr.2007.09.011
Google Scholar
[24]
H.T. Tang, S. Xue and C. Fan: Differential Evolution Strategy for Structural System Identification. Computers and Structures Vol. 86 (2008), p.2004–(2012).
DOI: 10.1016/j.compstruc.2008.05.001
Google Scholar