A Brief Survey on Artificial Intelligence Methods in Synchronous Motor Control

Article Preview

Abstract:

Many industrial applications require efficient servo drives and speed control to obtain the necessary performance with respect to different applications. As time passes, artificial intelligence has grown and replaced many traditional control methods in order to attain greater robustness to uncertainties, faster dynamic response and smaller position and speed errors. This paper briefly reviews several artificial intelligence implementations in synchronous motor control systems and briefly indicates the advantages and disadvantages of each method.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

198-203

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Negnevitsky, in: Artificial Intelligence: A Guide to Intelligent Systems, 2nd ed, Addison Wesley (2005).

Google Scholar

[2] R.A. Gupta, R. Kumar and A.K. Bansal: Artificial Intelligence Applications in Permanent Magnet Brushless DC Motor Drives. Artif Intell Rev Vol. 33 (2010), p.175–186.

DOI: 10.1007/s10462-009-9152-3

Google Scholar

[3] T. Wildi, in: Electrical Machines, Drives, and Power Systems, 6th ed, Prentice Hall (2005).

Google Scholar

[4] Information on http: /en. wikipedia. org/wiki/Synchronous_motor.

Google Scholar

[5] C. Elmas, O. Ustun and H.H. Sayan: A Neuro-fuzzy Controller for Speed Control of a Permanent Magnet Synchronous Motor Drive. Expert Systems with Applications Vol. 34 (2008), pp.657-664.

DOI: 10.1016/j.eswa.2006.10.002

Google Scholar

[6] C. Elmas and O. Ustun: A Hybrid Controller for the Speed Control of a Permanent Magnet Synchronous Motor Drive. Control Engineering Practice Vol. 16 (2008), pp.260-270.

DOI: 10.1016/j.conengprac.2007.04.016

Google Scholar

[7] S.V. Ustun and M. Demirtas: Optimal Tuning of PI Coefficients by using Fuzzy-genetic for V/f Controlled Induction Motor. Expert Systems with Applications Vol. 34 (2008), p.2714–2720.

DOI: 10.1016/j.eswa.2007.05.029

Google Scholar

[8] R.K. Ursem and P. Vadstrup: Parameter Identification of Induction Motors using Stochastic Optimization Algorithms. Applied Soft Computing Vol. 4 (2004), p.49–64.

DOI: 10.1016/j.asoc.2003.08.002

Google Scholar

[9] A.H. Isfahani and S. Vaez-Zadeh: Design Optimization of a Linear Permanent Magnet Synchronous Motor for Extra Low Force Pulsations. Energy Conversion and Management Vol. 48 (2007), p.443–449.

DOI: 10.1016/j.enconman.2006.06.022

Google Scholar

[10] R-F. Fung, C-L. Chiang and G-C. Wu: System Identification of a Pick-and-Place Mechanism Driven by a Permanent Magnet Synchronous Motor. Applied Mathematical Modelling Vol. 34 (2010), p.2323–2335.

DOI: 10.1016/j.apm.2009.10.040

Google Scholar

[11] D. Bochnia, W. Hofmann and H. Hupe: Ninth lnternational Conference on Electrical Machines and Drives, Conference Publication No. 468, ©IEE (1999), pp.297-301.

Google Scholar

[12] J. Juarez-Guerrero, S. Munoz-Gutierrez and W.W.M. Cuevas: Design of a Walking Machine Structure using Evolutionary Strategies. IEEE (1998), pp.1427-1432.

DOI: 10.1109/icsmc.1998.728084

Google Scholar

[13] J. Perl: Artificial Neural Networks in Motor Control Research. Clinical Biomechanics Vol. 19 (2004), p.873–875.

DOI: 10.1016/j.clinbiomech.2004.04.010

Google Scholar

[14] C. Zhang, H. Liu, S. Chen and F. Wang: Application of Neural Networks for Permanent Magnet Synchronous Motor Direct Torque Control. Journal of Systems Engineering and Electronics Vol. 19 No. 3 (2008), pp.555-561.

DOI: 10.1016/s1004-4132(08)60120-6

Google Scholar

[15] J. Zare: Vector Control of Permanent Magnet Synchronous Motor with Surface Magnet Using Artificial Neural Networks. Universities Power Engineering Conference, 2008. UPEC 2008. 43rd International (2008), p.1–4.

DOI: 10.1109/upec.2008.4651647

Google Scholar

[16] T.D. Batzel and K.Y. Lee: An Approach to Sensorless Operation of the Permanent-magnet Synchronous Motor using Diagonally Recurrent Neural Networks. IEEE Trans. Energy Convers. Vol. 18 (2003), p.100–106.

DOI: 10.1109/tec.2002.808386

Google Scholar

[17] F-J. Lin and R-J. Wai: Robust Recurrent Fuzzy Neural Network Control for Linear Synchronous Motor Drive System. Neurocomputing Vol. 50 (2003), pp.365-390.

DOI: 10.1016/s0925-2312(02)00572-6

Google Scholar

[18] J. Kabziński: Fuzzy Modeling of Disturbance Torques/Forces in Rotational/Linear Interior Permanent Magnet Synchronous Motors. EPE (2005), pp.1-10.

DOI: 10.1109/epe.2005.219566

Google Scholar

[19] H. Yousefi, M. Hirvonen, H. Handroos and A. Soleymani: Application of Neural Network in Suppressing Mechanical Vibration of Permanent Magnet Linear Motor. Control Engineering Practice Vol. 16 (2008), pp.787-797.

DOI: 10.1016/j.conengprac.2007.08.003

Google Scholar

[20] Y.J. Lee, J.W. Lee, H.C. Cho, K.W. Koo and K.S. Lee: Positioning Control of Linear Motor-Based Container Transfer System with Varying Weight. 2008 Second International Conference on Future Generation Communication and Networking Symposia (2008).

DOI: 10.1109/fgcns.2008.125

Google Scholar

[21] C.A. Borghi, D. Casadei, M. Fabbri, and G. Serra: Reduction of the Torque Ripple in Permanent Magnet Actuators by a Multi-Objective Minimization Technique. IEEE Transactions on Magnetics, Vol. 34 No. 5 (1998), pp.2869-2872.

DOI: 10.1109/20.717668

Google Scholar

[22] D-Y. Jeon, D. Kim, S-y. Hahn and G. Cha: Optimum Design of Linear Synchronous Motor using Evolution Strategy Combined with Stochastic FEM. IEEE Transactions on Magnetics Vol. 35 No. 3, (1999), pp.1734-1737.

DOI: 10.1109/20.767364

Google Scholar

[23] R-M. Jan, C-S. Tseng and R-J Liu: Robust PID Control Design for Permanent Magnet Synchronous Motor: A Genetic Approach. Electric Power Systems Research Vol. 78 (2008), p.1161–1168.

DOI: 10.1016/j.epsr.2007.09.011

Google Scholar

[24] H.T. Tang, S. Xue and C. Fan: Differential Evolution Strategy for Structural System Identification. Computers and Structures Vol. 86 (2008), p.2004–(2012).

DOI: 10.1016/j.compstruc.2008.05.001

Google Scholar