Synthesis, Characterization and Visible Light Photocatalytic Properties of BiOCl0.2Br0.1I0.7

Article Preview

Abstract:

The ternary solid solution BiOCl0.2Br0.1I0.7 was successfully synthesized using a wet chemical method. The visible light photocatalytic properties of BiOCl0.2Br0.1I0.7 were investigated for the first time. Powder samples were characterized by XRD, SEM, UV-vis spectrophotometry and nitrogen sorption. BiOCl0.2Br0.1I0.7 absorbs intensely in the visible light region and the optical bandgap is 1.82eV. The chlorine and the bromine elements have an obvious effect in changing the bandgap energy and the particle size of the catalysts. The deep valance band edge position, the internal electric fields and the morphology give the BiOCl0.2Br0.1I0.7 best visible light photocatalytic properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

2094-2098

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] N. Kijima, K. Matano, M. Saito, T. Oikawa, T. Konishi, H. Yasuda, T. Sato and Y. Yoshimura: Appl. Catal. A: Gen. Vol. 206(2001), p.237.

Google Scholar

[2] H.Z. An,Y. Du,T.M. Wang,C. Wang W.C. Hao and J.Y. Zhang: Rare Met. Vol. 27(2008), p.243.

Google Scholar

[3] X. Zhang Z.H. Ai,F.L. Jia and L.Z. Zhang: J. Phys. Chem. C Vol. 112(2008), p.747.

Google Scholar

[4] C.L. Yu,J.C. Yu,C.F. Fan H.R. Wen and S.J. Hu: Mater. Sci. Eng., B Vol. 166 (2010), p.213.

Google Scholar

[5] X. Zhang L.Z. Zhang T.F. Xie and D.J. Wang: J. Phys. Chem. C Vol. 113(2009), p.7371.

Google Scholar

[6] W.D. Wang F.Q. Huang and X.P. Lin: Scripta Mater. Vol. 56(2007), p.669.

Google Scholar

[7] W.D. Wang F.Q. Huang X.P. Lin and J.H. Yang: Catal. Commun. Vol. 9(2008), p.8.

Google Scholar

[8] R.D. Shannon and P.K. Waring: J. Phys. Chem. Solid Vol. 46 (1985), p.325.

Google Scholar

[9] S. H. Chen, Z. Y. Fan and D.L. Carroll: J. Phys. Chem. B Vol. 106 (2002), p.10777.

Google Scholar

[10] J.Q. Hu, Y. Zhang, B. Liu, J. X. Liu, H.H. Zhou, Y.F. Xu, Y.X. Jiang, Z.L. Yang and Z.Q. Tian: J. Am. Chem. Soc. Vol. 126(2004), p.9470.

Google Scholar

[11] M. Shang , W. Z . Wang and L. Zhang: J. Hazard. Mater. Vol. 167(2009), p.803.

Google Scholar

[12] J. Zhang F.J. Shi,J. Lin,D. F Chen J.M. Gao Z.X. Huang X.X. Ding and C.C. Tang: Chem. Mater. Vol. 20(2008), p.2937.

Google Scholar

[13] C. Burda, X.B. Chen, R. Narayanan and M. A. El-Sayed: Chem. Rev. Vol. 105(2005), p.1025.

Google Scholar

[14] L.S. Zhang, W.Z. Wang, L. Zhou and H.L. Xu: Small Vol. 3(2007), p.1618.

Google Scholar

[15] H.L. Xu,W.Z. Wang and W. Zhu: J. Phys. Chem. B Vol. 110 (2006), p.13829.

Google Scholar

[16] C. Wang, B.Q. Xu, X.M. Wang and J.C. Zhao: J. Solid State Chem. Vol. 178 (2005), p.3500.

Google Scholar

[17] A. Kudo and M. Sekizawa: Chem. Commun. Vol. 15(2000), p.1371.

Google Scholar

[18] Z.B. Lei, W. S. You, M. Y. Liu, G. H. Zhou, T. Takata, M. Hara, K. Domen and C. Li: Chem. Commun. Vol. 17(2003), p.2142.

Google Scholar

[19] J.W. Tang and J.H. Ye: Phys. Lett. Vol. 410(2005), p.104.

Google Scholar

[20] A.H. Nethercot: Phys. Rev. Lett. Vol. 33 (1974), p.1088.

Google Scholar

[21] Y. I. Kim,S. J. Atherton, E. S. Brigham and T. E. Mallouk: J. Phys. Chem. Vol. 97(1993), p.11802.

Google Scholar

[22] M. A. Butler and D. S. Ginley: J. Electrochem. Soc. Vol. 125 (1978), p.228.

Google Scholar