CO2 Trans-Critical Two Stage Compression Refrigeration Cycle with Vortex Tube

Article Preview

Abstract:

The paper analyses CO2 trans-critical two stage compression refrigeration cycle with vortex tube expansion by thermodynamics method. And compare with CO2 trans-critical two stage compression refrigeration cycle with expansion value. The results show that in the calculated conditions of the paper, the performance of the cycle with vortex tube improves 2.4%~16.3% than the cycle with expansion value. The optimal discharge pressure maximizing COP of the cycle with vortex tube exists. With lower evaporating temperature or higher gas cooler exit temperature, COP of system decreases and COP improvement increases. The effect of cold fluid mass fraction on COP is not significant, but COP improvement increases more quickly with cold gas mass fraction increasing.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

255-260

Citation:

Online since:

March 2011

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Lorentzen. Revival of carbon dioxide as a refrigerant [J]. Int J. Refrig, 1994, 17(5): 292-301.

Google Scholar

[2] Pettersen J, Hafner A, Skaugen G. Development of compact heat exchangers for CO2 air-conditioning systems [J]. Int J. Refrig, 1998, 21 (3): 180-193.

DOI: 10.1016/s0140-7007(98)00013-9

Google Scholar

[3] Andy Pearson. Carbon dioxide-new uses for an old refrigerant [J]. Int J. Refrig, 2005, 28(8): 1140-1148.

DOI: 10.1016/j.ijrefrig.2005.09.005

Google Scholar

[4] Guoliang Ding, Dongping Huang, Chunlu Zhang. Steady-state Simulation of Transcritical Carbon Dioxide Automobile Air-conditioner [J]. Journal of Engineering Thermophysics, 2001, 22 (3): 272-274.

Google Scholar

[5] Yitai Ma, Junlan Yang, Shengchun Liu. Thermodynamic analysis for transcrutical CO2 cycle and conventional refrigeration cycle [J]. Acta Energiae Solaris Sinica, 2005, 26 (6): 836-841.

Google Scholar

[6] Junpu Liu, Jiangping Chen, Zhijiu Chen. Thermodynamic analysis on CO2 trans-critical two-stage compression refrigerating cycle [J]. Journal of Shanghai Jiaotong University, 2002, 36 (10): 1393-1395.

Google Scholar

[7] M. Kim, J. Pettersen, C.W. Bullard, Fundamental process and system design issues in CO2 vapour compression systems [J]. Progress in Energy and Combustion. Science, 2004, 30 (2): 119–174.

DOI: 10.1016/j.pecs.2003.09.002

Google Scholar

[8] Jun Lan Yang, Yi Tai Ma, Sheng Chun Liu. Performance investigation of trans-critical carbon dioxide two-stage compression cycle with expander [J]. Energy, 2007, 32 (3): 237-345.

DOI: 10.1016/j.energy.2006.03.031

Google Scholar

[9] Yingbai Xie, Ganglei Sun, Chuntao Liu. Thermodynamic analysis of CO2 trans-critical two-stage compression refrigeration cycle [J]. Journal of Chemical Industry and Engineering, 2008, 59(12): 2985-2989.

Google Scholar

[10] Yong Cao, Jianfeng Wu, Ercang Luo. Evolution and Evaluation of Research in Vortex Tube [J]. Cryogenics, 2001, 6: 1-5.

Google Scholar

[11] Shu He, Yuting Wu, Shu Jiang. Effect of nozzles on energy separation performance of vortex tube [J]. Journal of Chemical Industry and Engineering, 2005, 56 (11): 2073-(2076).

Google Scholar

[12] K.G. Christensen, M. Heiredal, M. Kauffeld, et al. Energy savings in refrigeration by means of a new expansion device. Report of Energy research programme, Journal No. 1223/99–0006 (2001).

Google Scholar

[13] E.A. Groll. Recent advances in the transcritical CO2 cycle technology. in: 8th National & 7th ISHMT-ASME Heat & Mass Transfer Conference, IIT Guwahati India, (2006).

Google Scholar

[14] E.A. Groll, J.H. Kim. Review of recent advances toward transcritical CO2 cycle technology. HVAC & R Research, 2007, 13 (3): 499-520.

DOI: 10.1080/10789669.2007.10390968

Google Scholar

[15] D. Li, J.S. Baek, E.A. Groll, et al. Thermodynamic analysis of vortex tube and work output expansion devices for the transcritical carbon dioxide cycle. Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, Purdue University, USA, 2000: 433-440.

Google Scholar

[16] Liao SM, Zhao TS, Jakobsen A. A correlation of optimal heat rejection pressure in transcritical carbon dioxide cycles [J]. Applied Thermal Engineering, 2000, 20 (9): 831-834.

DOI: 10.1016/s1359-4311(99)00070-8

Google Scholar