[1]
G. Lorentzen. Revival of carbon dioxide as a refrigerant [J]. Int J. Refrig, 1994, 17(5): 292-301.
Google Scholar
[2]
Pettersen J, Hafner A, Skaugen G. Development of compact heat exchangers for CO2 air-conditioning systems [J]. Int J. Refrig, 1998, 21 (3): 180-193.
DOI: 10.1016/s0140-7007(98)00013-9
Google Scholar
[3]
Andy Pearson. Carbon dioxide-new uses for an old refrigerant [J]. Int J. Refrig, 2005, 28(8): 1140-1148.
DOI: 10.1016/j.ijrefrig.2005.09.005
Google Scholar
[4]
Guoliang Ding, Dongping Huang, Chunlu Zhang. Steady-state Simulation of Transcritical Carbon Dioxide Automobile Air-conditioner [J]. Journal of Engineering Thermophysics, 2001, 22 (3): 272-274.
Google Scholar
[5]
Yitai Ma, Junlan Yang, Shengchun Liu. Thermodynamic analysis for transcrutical CO2 cycle and conventional refrigeration cycle [J]. Acta Energiae Solaris Sinica, 2005, 26 (6): 836-841.
Google Scholar
[6]
Junpu Liu, Jiangping Chen, Zhijiu Chen. Thermodynamic analysis on CO2 trans-critical two-stage compression refrigerating cycle [J]. Journal of Shanghai Jiaotong University, 2002, 36 (10): 1393-1395.
Google Scholar
[7]
M. Kim, J. Pettersen, C.W. Bullard, Fundamental process and system design issues in CO2 vapour compression systems [J]. Progress in Energy and Combustion. Science, 2004, 30 (2): 119–174.
DOI: 10.1016/j.pecs.2003.09.002
Google Scholar
[8]
Jun Lan Yang, Yi Tai Ma, Sheng Chun Liu. Performance investigation of trans-critical carbon dioxide two-stage compression cycle with expander [J]. Energy, 2007, 32 (3): 237-345.
DOI: 10.1016/j.energy.2006.03.031
Google Scholar
[9]
Yingbai Xie, Ganglei Sun, Chuntao Liu. Thermodynamic analysis of CO2 trans-critical two-stage compression refrigeration cycle [J]. Journal of Chemical Industry and Engineering, 2008, 59(12): 2985-2989.
Google Scholar
[10]
Yong Cao, Jianfeng Wu, Ercang Luo. Evolution and Evaluation of Research in Vortex Tube [J]. Cryogenics, 2001, 6: 1-5.
Google Scholar
[11]
Shu He, Yuting Wu, Shu Jiang. Effect of nozzles on energy separation performance of vortex tube [J]. Journal of Chemical Industry and Engineering, 2005, 56 (11): 2073-(2076).
Google Scholar
[12]
K.G. Christensen, M. Heiredal, M. Kauffeld, et al. Energy savings in refrigeration by means of a new expansion device. Report of Energy research programme, Journal No. 1223/99–0006 (2001).
Google Scholar
[13]
E.A. Groll. Recent advances in the transcritical CO2 cycle technology. in: 8th National & 7th ISHMT-ASME Heat & Mass Transfer Conference, IIT Guwahati India, (2006).
Google Scholar
[14]
E.A. Groll, J.H. Kim. Review of recent advances toward transcritical CO2 cycle technology. HVAC & R Research, 2007, 13 (3): 499-520.
DOI: 10.1080/10789669.2007.10390968
Google Scholar
[15]
D. Li, J.S. Baek, E.A. Groll, et al. Thermodynamic analysis of vortex tube and work output expansion devices for the transcritical carbon dioxide cycle. Fourth IIR-Gustav Lorentzen Conference on Natural Working Fluids at Purdue, Purdue University, USA, 2000: 433-440.
Google Scholar
[16]
Liao SM, Zhao TS, Jakobsen A. A correlation of optimal heat rejection pressure in transcritical carbon dioxide cycles [J]. Applied Thermal Engineering, 2000, 20 (9): 831-834.
DOI: 10.1016/s1359-4311(99)00070-8
Google Scholar