[1]
P. M. Gresho, Some current CFD issues relevant to the incompressible Navier-Stokes equations, Comput. Meth. Appl. Mech. Eng., 87 (1991), pp.2010-252.
DOI: 10.1016/0045-7825(91)90006-r
Google Scholar
[2]
Gresho, P. M., Incompressible fluid dynamics: Some fundamental formulations issue, Annu. Rev. Fluid Mech., 91, pp.413-453, (1991).
DOI: 10.1146/annurev.fl.23.010191.002213
Google Scholar
[3]
Gresho, P. M., Some interesting issues in incompressible fluid dynamics both in the Continum and in Numerical simulations, Advances in Applied Mech. 28, pp.45-140, (1992).
DOI: 10.1016/s0065-2156(08)70154-6
Google Scholar
[4]
Gresho, P. M. and Sani, R. L, Incompressible flow and the finite element method, Advection-diffusion and Isotherma laminar flow, Wiley , Chichester, UK, (1998).
Google Scholar
[5]
Roache, P. J., Computational Fluid Dynamics, Hermosa, Albuquerque, NM, (1982).
Google Scholar
[6]
Campion-Renson, A and Crochet, M. J., On the Streamfunction-vorticity finite element solutions of Navier Stokes Equations, Int. J. Num. Methods Eng. 12, pp.1809-1818, (1978).
DOI: 10.1002/nme.1620121204
Google Scholar
[7]
Tezduyar, T. E., Glowinski, R and Liou, J., Petrov-Galerkin methods on Multiply connected domains for Vorticity-Streamfunction formulation of the incompressible Navier-Stokes Equation, Int. J. Num. Meth. Fluids, 8, pp.1269-1290, (1988).
DOI: 10.1002/fld.1650081012
Google Scholar
[8]
Comini, G., Manzan, M and Nonino, C., Finite element solutions of the Stream-function vorticity equations for incompressible two-dimensional flows, Int. J. Num. Methd. Fluids, 19, pp.513-525, (1994).
DOI: 10.1002/fld.1650190605
Google Scholar
[9]
Comini, G., Cortella, G and Manzan, M., A Streamfunction vorticity based finite element formulation of laminar convection problems, Num. Heat Trans. Part B: Fundamentals, 28, pp.1-22, (1995).
DOI: 10.1080/10407799508928818
Google Scholar
[10]
Manzan, M. m and Comini, G., Inflow and Outflow boundary conditions in the finite element solutions of the Streamfunction-vorticity equations, Commun. Num. Meth. Eng., 11, pp.33-40, (1995).
DOI: 10.1002/cnm.1640110106
Google Scholar
[11]
Manzan, M., Cortella, G and Comini, G., Solution of the streamfunction-vorticity equation in flow past a circular cylinder, Proc. Ninth Int. Conf. on Numerical Methd. In laminar and turbulent flows, eds. C. Taylor and P. Durbetaki, Vol. 9, part II. 1515-1526, Pineridge Press, Swansea, UK, (1995).
DOI: 10.1080/10407799508928818
Google Scholar
[12]
Cortella, G., Comini, G and Manzan, M., A Streamfunction-vorticty based finite element solutions for the Poisuille-Benard Channel flow, Proc. Ninth Int. Conf. on Numerical Methods in Thermal Problems, eds. R. W. Lewis and P. Durbetaki, Vol. 9, part I, pp.5-16, Pineridge Press, Swansea, UK, (1995).
DOI: 10.1080/10407799508928818
Google Scholar
[13]
Comini, G, Manzan, M and Cortella, G., Open boundary conditions for the Streamfunction-vorticity Formulation of Unsteady Laminar Convection, Num. Heat Trans. Part B: Fundamentals, 31, pp.217-234, (1997).
DOI: 10.1080/10407799708915106
Google Scholar
[14]
Tezduyar, T. E., Liou, J., Ganjoo, D. K and Behr, M., Solution Techniques for the vorticity-stream function formulation of Two-dimensional unsteady incompressible flows, Int. J. Num. Methds. Fluids, 11, pp.515-539, (1990).
DOI: 10.1002/fld.1650110505
Google Scholar
[15]
Manzan, M. Comini, G and Cortella, G., A Streamfunction-vorticity formulations of spatially Periodic flows, Commun. Num. Methds. Eng 13, pp.867-874, (1997).
DOI: 10.1002/(sici)1099-0887(199711)13:11<867::aid-cnm108>3.0.co;2-t
Google Scholar
[16]
Tezduyar, T. E., Liou, J., Computations of Spatially Periodic Flows Based on the vorticity-streamfunction formulations, Compt. Methods. Appl. Mech. Eng., 83, pp.121-142, (1990).
DOI: 10.1016/0045-7825(90)90147-e
Google Scholar
[17]
Nonino, C and Comini, G., Finite-Element Analysis of Convection Problems in Spatially Periodic Domains, Num. Heat Transfer, Part B: Fundamentals, 34, pp.61-378, (1998).
DOI: 10.1080/10407799808915063
Google Scholar
[18]
Baker, A. J., Finite Element Computational Fluid Mechanics, Chap. 5, Hemisphere, Washington, DC, (1983).
Google Scholar
[19]
Sani, R. L and Gresho, P. M., Resume and Remarks on the Open boundary Conditions Minisymposium, Int. J. Numer. Methds. Fluids, 18, pp.983-1008, (1994).
DOI: 10.1002/fld.1650181006
Google Scholar
[20]
Comini, G., Del Giudice, S and Nonino, C., Finite Element Analysis in Heat Transfer- Basic Formulation and Linear Problems, Chap. 5, Taylor and Francis, Washington, DC, (1994).
DOI: 10.1201/9781315275109
Google Scholar