Computational Study of Streamfunction-Vorticity Formulation of Incompressible Flow and Heat Transfer Problems

Article Preview

Abstract:

In this paper we have studied the streamfunction-vorticity formulation can be advantageously used to analyse steady as well as unsteady incompressible flow and heat transfer problems, since it allows the elimination of pressure from the governing equations and automatically satisfies the continuity constraint. On the other hand, the specification of boundary conditions for the streamfunction-vorticity is not easy and a poor evaluation of these conditions may lead to serious difficulties in obtaining a converged solution. The main issue addressed in this paper is the specification in the boundary conditions in the context of finite element of discretization, but approach utilized can be easily extended to finite volume computations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

511-516

Citation:

Online since:

March 2011

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2011 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. M. Gresho, Some current CFD issues relevant to the incompressible Navier-Stokes equations, Comput. Meth. Appl. Mech. Eng., 87 (1991), pp.2010-252.

DOI: 10.1016/0045-7825(91)90006-r

Google Scholar

[2] Gresho, P. M., Incompressible fluid dynamics: Some fundamental formulations issue, Annu. Rev. Fluid Mech., 91, pp.413-453, (1991).

DOI: 10.1146/annurev.fl.23.010191.002213

Google Scholar

[3] Gresho, P. M., Some interesting issues in incompressible fluid dynamics both in the Continum and in Numerical simulations, Advances in Applied Mech. 28, pp.45-140, (1992).

DOI: 10.1016/s0065-2156(08)70154-6

Google Scholar

[4] Gresho, P. M. and Sani, R. L, Incompressible flow and the finite element method, Advection-diffusion and Isotherma laminar flow, Wiley , Chichester, UK, (1998).

Google Scholar

[5] Roache, P. J., Computational Fluid Dynamics, Hermosa, Albuquerque, NM, (1982).

Google Scholar

[6] Campion-Renson, A and Crochet, M. J., On the Streamfunction-vorticity finite element solutions of Navier Stokes Equations, Int. J. Num. Methods Eng. 12, pp.1809-1818, (1978).

DOI: 10.1002/nme.1620121204

Google Scholar

[7] Tezduyar, T. E., Glowinski, R and Liou, J., Petrov-Galerkin methods on Multiply connected domains for Vorticity-Streamfunction formulation of the incompressible Navier-Stokes Equation, Int. J. Num. Meth. Fluids, 8, pp.1269-1290, (1988).

DOI: 10.1002/fld.1650081012

Google Scholar

[8] Comini, G., Manzan, M and Nonino, C., Finite element solutions of the Stream-function vorticity equations for incompressible two-dimensional flows, Int. J. Num. Methd. Fluids, 19, pp.513-525, (1994).

DOI: 10.1002/fld.1650190605

Google Scholar

[9] Comini, G., Cortella, G and Manzan, M., A Streamfunction vorticity based finite element formulation of laminar convection problems, Num. Heat Trans. Part B: Fundamentals, 28, pp.1-22, (1995).

DOI: 10.1080/10407799508928818

Google Scholar

[10] Manzan, M. m and Comini, G., Inflow and Outflow boundary conditions in the finite element solutions of the Streamfunction-vorticity equations, Commun. Num. Meth. Eng., 11, pp.33-40, (1995).

DOI: 10.1002/cnm.1640110106

Google Scholar

[11] Manzan, M., Cortella, G and Comini, G., Solution of the streamfunction-vorticity equation in flow past a circular cylinder, Proc. Ninth Int. Conf. on Numerical Methd. In laminar and turbulent flows, eds. C. Taylor and P. Durbetaki, Vol. 9, part II. 1515-1526, Pineridge Press, Swansea, UK, (1995).

DOI: 10.1080/10407799508928818

Google Scholar

[12] Cortella, G., Comini, G and Manzan, M., A Streamfunction-vorticty based finite element solutions for the Poisuille-Benard Channel flow, Proc. Ninth Int. Conf. on Numerical Methods in Thermal Problems, eds. R. W. Lewis and P. Durbetaki, Vol. 9, part I, pp.5-16, Pineridge Press, Swansea, UK, (1995).

DOI: 10.1080/10407799508928818

Google Scholar

[13] Comini, G, Manzan, M and Cortella, G., Open boundary conditions for the Streamfunction-vorticity Formulation of Unsteady Laminar Convection, Num. Heat Trans. Part B: Fundamentals, 31, pp.217-234, (1997).

DOI: 10.1080/10407799708915106

Google Scholar

[14] Tezduyar, T. E., Liou, J., Ganjoo, D. K and Behr, M., Solution Techniques for the vorticity-stream function formulation of Two-dimensional unsteady incompressible flows, Int. J. Num. Methds. Fluids, 11, pp.515-539, (1990).

DOI: 10.1002/fld.1650110505

Google Scholar

[15] Manzan, M. Comini, G and Cortella, G., A Streamfunction-vorticity formulations of spatially Periodic flows, Commun. Num. Methds. Eng 13, pp.867-874, (1997).

DOI: 10.1002/(sici)1099-0887(199711)13:11<867::aid-cnm108>3.0.co;2-t

Google Scholar

[16] Tezduyar, T. E., Liou, J., Computations of Spatially Periodic Flows Based on the vorticity-streamfunction formulations, Compt. Methods. Appl. Mech. Eng., 83, pp.121-142, (1990).

DOI: 10.1016/0045-7825(90)90147-e

Google Scholar

[17] Nonino, C and Comini, G., Finite-Element Analysis of Convection Problems in Spatially Periodic Domains, Num. Heat Transfer, Part B: Fundamentals, 34, pp.61-378, (1998).

DOI: 10.1080/10407799808915063

Google Scholar

[18] Baker, A. J., Finite Element Computational Fluid Mechanics, Chap. 5, Hemisphere, Washington, DC, (1983).

Google Scholar

[19] Sani, R. L and Gresho, P. M., Resume and Remarks on the Open boundary Conditions Minisymposium, Int. J. Numer. Methds. Fluids, 18, pp.983-1008, (1994).

DOI: 10.1002/fld.1650181006

Google Scholar

[20] Comini, G., Del Giudice, S and Nonino, C., Finite Element Analysis in Heat Transfer- Basic Formulation and Linear Problems, Chap. 5, Taylor and Francis, Washington, DC, (1994).

DOI: 10.1201/9781315275109

Google Scholar