Investigation on AR Techniques of Silicon Solar Cells

Article Preview

Abstract:

This work presents study of both the antireflection coatings on silicon solar cells and surface texture of silicon solar cell, with the aim to prepare high quality Si solar cells. Surface texturing, either in combination with an anti-reflection coating or by itself, can be used to minimize reflection, but the large reflection loss can be reduced significantly via a suitable anti-reflecting coatings. Significant improvement of the short circuit current after anti-reflecting coatings was observed. It is found that the currentvoltage characteristic with a double-layer anti-reflecting coatings is better than that with a single-layer anti-reflecting coatings. Depositing a multilayer on the textured surface reduces the large reflection loss significantly. The short circuit current of silicon solar cells has significant improvement after depositing anti-reflecting coatings on textured surface silicon, and it increases the efficiency of the Si solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

52-55

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.K. Ferry, J.P. Bird, Electronic materials and devices, Academic Press, San Diego, (2001).

Google Scholar

[2] R.E. Hummel, Springer-Verlag, New York, (2001).

Google Scholar

[3] J. Pla´ , M. Tamasi, R. Rizzoli, M. Losurdo, E. Centurioni, C. Summonte, F. Rubinelli, Thin Solid Films 425 (2003) 185.

DOI: 10.1016/s0040-6090(02)01143-4

Google Scholar

[4] F. Fertig, E. Franklin, Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007, p.326–329.

Google Scholar

[5] J. Zhao, M.A. Green, IEEE Trans. on Electronic Dev. 38 (8), (1991).

Google Scholar

[6] M.A. Green et al., Appl. Phys. Lett. 44 (1984) 1163.

Google Scholar

[7] SHEN Jun, WU Xiao-xian, XIE Zh-i yong, etal. Acta Energiae Solaris Sinica, 2007, 28(9): 943-946.

Google Scholar

[8] ANG Yong-qiang, HU-Xiaoyun, MIAO Zhong-hai, et al. Acta Photonica Sinica, 2008, 37(6): 1165-1168.

Google Scholar

[9] J. Pla´ , M. Barrera, F. Rubinelli, Semicond. Sci. Technol. 22 (2007) 1122.

Google Scholar

[10] B.L. Sopori, R.A. Pryor, Solar Cells 8 (1983) 249.

Google Scholar

[11] A. V. Shah, H. Schade, M. Vanecek, J. Meier, E. Vallat-Sauvain, N. Wyrsch, U. Kroll, C. Droz and J. Bailat: vol. 12, no. 2 – 3, p.113 – 142, Mar. (2004).

DOI: 10.1002/pip.533

Google Scholar

[12] P.H. Berning, Theory and calculation of optical thin Þlms, in: Physics of Thin Films Collec., vol. 1, Academic Press, New York, 1963, p.69.

Google Scholar

[13] R.J. Ong, J.T. Dawley and P.G. Clem: submitted to Journal of Materials Research (2003).

Google Scholar

[14] E. Fornies, C. Zaldo, J.M. Albella, Solar Energy Materials and Solar Cells 87 (2005) 583-593.

DOI: 10.1016/j.solmat.2004.07.040

Google Scholar

[15] M.A. Gonsalvez, R.M. Nieminen, New Journal of Physics 5 (2003) 100. 1-100. 28.

Google Scholar

[16] J.D. Hylton, A.R. Burgers, W.C. Sinke, Journal of The Electrochemical Society 151 (2004) 408-427.

Google Scholar

[17] P. Panek, M. Lipiski, J. Dutkiewicz, Journal of Materials Science 40/6 (2005) 1459-1463.

Google Scholar

[18] V.Y. Yerokhov, R. Hezel, M. Lipinski, R. Ciach, H. Nagel, A. Mylyanych, P. Panek, Solar Energy Materials and Solar Cells 72 (2002) 291-298.

DOI: 10.1016/s0927-0248(01)00177-5

Google Scholar