[1]
J.L. Davis, A.H. Wani, B.R. O'Neal, L.D. Hansen, RDX biodegradation column study: comparison of electron donors for biologically induced reductive transformation in groundwater, J. Hazard. Mater. 112 (2004) 45–54.
DOI: 10.1016/j.jhazmat.2004.03.020
Google Scholar
[2]
A. Halasz, C. Groom, E. Zhou, L. Paquet, C. Beaulieu, S. Deschamps, A. Corriveau, S. Thiboutot, G. Ampleman, A. Dubois, Detection of explosives and their degradation products in soil environments, J. Chromatogr. A 963 (2002) 411–418.
DOI: 10.1016/s0021-9673(02)00553-8
Google Scholar
[3]
M.E. Walsh, T.F. Jenkins, Identification of TNT transformation products in soil, Technical Report CRREL-SR-92-16, Cold Regions Res Eng Lab, Hanover, NH, USA, (1992).
Google Scholar
[4]
Duygu Evin. Thin layer drying kinetics of Gundelia tiurnefortii L. [J]. Food and Bioproducts Processing, 2011, 7(2): 261-271.
DOI: 10.1016/j.fbp.2011.07.002
Google Scholar
[5]
A.O. Dissa, D.J. Bathiebo, H. Desmorirux, O. Coulibaly, J. Koulidiati. Experimental characterization and modeling of thin layer direct solar drying of Amelie and Brooks mangoes. Energy, 2011, 1(44): 2517-2527.
DOI: 10.1016/j.energy.2011.01.044
Google Scholar
[6]
Qiong Xiao, Pingrang Shen. The factor analysis affecting water evaporation in the vacuum drying process [J]. Chinese patent medicine, 2009, 7(31): 1028-103.
Google Scholar
[7]
Shu Yinguang, etc. Hexogeon [M]. Chinese Books of Explosives and Propellants, 1974: 90-95.
Google Scholar
[8]
Murray F J, Moore C E, Wilczek F J. Microwave resonant absorption of potential exothermic compounds, ADA279798[R]. Springfield: NTIS, (1989).
Google Scholar
[9]
Zuo Jun, HAN Chao, YONG Lian. Safety of heating TNT in microwave oven[J]. Energetic Materials, 2006, 14(4), 283-284.
Google Scholar
[10]
McIntosh G. Effect of 2. 45 GHz microwave radiation on diverse explosive DREV memorandum , TM 一9702 [R]. Springfield: NTIS, (1998).
Google Scholar
[11]
Hayes R W, Frandsen R O. Microwave melt out of explosives from loaded munitions[c]/JANNAF Propellant Development& Characterization Subcommittee and Safety & Environmental Protection Subcommittee Joint Meeting. Columbia: Chemical Propulsion Inform ation Agency Columbia M D , 1998: 345 356.
Google Scholar
[12]
Yu Weifei, Zeng Guiyu. Nie Fude. Microwave desiccation of TATB and RDX [J]. Energetic Materials, 2004, 12(2): 101—103.
Google Scholar
[13]
Li Yongxiang, Cui Jianlan, Wang Jianlong, Cao Duanli. Study of a New Technology about Microwave Desiccation of RDX [J]. Chinese Journal of Explosives& Propellants, 2008, 31(3): 41—43.
Google Scholar
[14]
O'callaghan J R, Menzies D J, Bailey P H. Digital simulation of agricultural drier performance[J]. Journal of Agricultural Engineering Research, 1971, 16(3): 223-244.
DOI: 10.1016/s0021-8634(71)80016-1
Google Scholar
[15]
Liu Q, Bakker-Arkema F W. Stochastic modelling of grain drying: Part 2. Model development[J]. Journal of Agricultural Engineering Research, 1997, 66(4): 275-280.
DOI: 10.1006/jaer.1996.0145
Google Scholar
[16]
Henderson, S. M., & Pabis, S. (1961). Grain drying theory I. Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6(3), 169–174.
Google Scholar
[17]
Chhinnman, M. S. (1984). Evaluation of selected mathematical models for describing thin layer drying of in-shell pecans. Transactions of the ASAE, 27, 610–615.
DOI: 10.13031/2013.32837
Google Scholar
[18]
Yaldiz O, Ertekin C, Uzun H I. Mathematical modeling of thin layer solar drying of sultana grapes[J]. Energy, 2001, 26(5): 457-465.
DOI: 10.1016/s0360-5442(01)00018-4
Google Scholar
[19]
Henderson, S. M. (1974). Progress in developing the thin-layer drying equation. Transactions of the ASAE, 17, 1167–1172.
DOI: 10.13031/2013.37052
Google Scholar
[20]
Sharaf-Eldeen, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1980). A model for ear corn drying. Transactions of the ASAE, 23, 1261–1271.
DOI: 10.13031/2013.34757
Google Scholar
[21]
Page, G. (1949). Factors influencing the maximum rates of air-drying shelled corn in thin layer. M.S. Thesis. Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
Google Scholar
[22]
Overhults, D. D., White, G. M., Hamilton, M. E., & Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the ASAE, 16, 195–200.
DOI: 10.13031/2013.37459
Google Scholar
[23]
Wang, C. Y., & Singh, R. P. (1978). Use of variable equilibrium moisture content in modelling rice drying. ASAE Paper No. 78–6505, ASAE, St. Joseph, MI.
Google Scholar
[24]
Midilli, A., & Kucuk, H. (2003). Mathematical modelling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44, 1111–1122.
DOI: 10.1016/s0196-8904(02)00099-7
Google Scholar
[25]
Khraisheh, M. A. M., Cooper, T. J. R., & Magee, T. R. A. (1997). The transport mechanism of moisture during air drying processes. Trans IChemE, 75(C), 34–39.
DOI: 10.1205/096030897531342
Google Scholar
[26]
Crank, J. (1975). The mathematics of diffusion (2nd ed. ). Oxford, UK: Clarendon Press.
Google Scholar
[27]
Babalis, J. S., & Belesssiotis, G. V. (2004). Influence of drying conditions on the drying constants and moisture diffusivity during the thin layer drying of figs. Journal of Food Engineering, 65, 449–458.
DOI: 10.1016/j.jfoodeng.2004.02.005
Google Scholar
[28]
Akgun, N. A., & Doymaz, I. (2005). Modeling of olive cake thin-layer drying process. Journal of Food Engineering, 68, 455–461.
DOI: 10.1016/j.jfoodeng.2004.06.023
Google Scholar
[29]
Sanjuan, N., Lozano, M., Garcia-Pascal, P., & Mulet, A. (2003). Dehydration kinetics of red pepper (Capsicum annuum L var Jaranda). Journal of the Science of Food and Agriculture, 83, 697–701.
DOI: 10.1002/jsfa.1334
Google Scholar
[30]
Ramaswamy, H. S., & van Nieuwenhuijzen, N. H. (2002). Evaluation and modeling of two-stage osmo-convective drying of apple slices. Drying Technology, 20(3), 651–667.
DOI: 10.1081/drt-120002822
Google Scholar
[31]
Ertekin C, Yaldiz O. Drying of eggplant and selection of a suitable thin layer drying model[J]. Journal of food engineering, 2004, 63(3): 349-359.
DOI: 10.1016/j.jfoodeng.2003.08.007
Google Scholar
[32]
Shi Q, Zheng Y, Zhao Y. Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices[J]. Energy Conversion and Management, 2013, 71: 208-216.
DOI: 10.1016/j.enconman.2013.03.032
Google Scholar
[33]
McMinn W A M. Thin-layer modelling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder[J]. Journal of Food Engineering, 2006, 72(2): 113-123.
DOI: 10.1016/j.jfoodeng.2004.11.025
Google Scholar
[34]
Arevalo-Pinedo, A., & Murr, F. E. M. (2006). Kinetics of vacuum drying of pumpkin (Cucurbita maxima): Modeling with shrinkage. Journal of Food Engineering, 76(4), 562–567.
DOI: 10.1016/j.jfoodeng.2005.06.003
Google Scholar
[35]
Giri S K, Prasad S. Optimization of microwave-vacuum drying of button mushrooms using response-surface methodology[J]. Drying Technology, 2007, 25(5): 901-911.
DOI: 10.1080/07373930701370407
Google Scholar
[36]
Madamba, P. S. et al. (1996). The thin layer drying characteristics of garlic slices. Journal of Food Engineering, 29, 75–97.
DOI: 10.1016/0260-8774(95)00062-3
Google Scholar
[37]
Doymaz, I. (2005a). Drying behaviour of green beans. Journal of Food Engineering, 69, 161–165.
Google Scholar
[38]
Doymaz, I. (2005b). Drying characteristics and kinetics of okra. Journal of Food Engineering, 69, 275–279.
Google Scholar