Drying Kinetics of RDX under Vacuum Conditions

Article Preview

Abstract:

The drying characteristics of Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are investigated in the ranges of 60-90°C of drying temperature under two vacuum conditions in a laboratory scale dryer. The effect of drying temperature and absolute pressure on the drying characteristics is determined. In order to estimate and select the suitable form of RDX drying curves, the curves are fitted to ten different semi-theoretical and/or empirical thin-layer drying models and coefficients are evaluated by non-linear regression analysis. The models are compared based on their coefficient of determination, such as mean bias error, root mean square error, reduced chi-square and modeling efficiency between experimental and predicted moisture ratios. It is deduced that Midilli-Kucuk model has shown a better fit to the experimental drying data as compared to other models. A diffusion model is used to describe the moisture transfer and the effective diffusivity for RDX drying is also determined at each temperature. Beside, the activation energy is also expressed using Arrhenius-type relationship under atmospheric pressure and vacuum conditions.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

680-690

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.L. Davis, A.H. Wani, B.R. O'Neal, L.D. Hansen, RDX biodegradation column study: comparison of electron donors for biologically induced reductive transformation in groundwater, J. Hazard. Mater. 112 (2004) 45–54.

DOI: 10.1016/j.jhazmat.2004.03.020

Google Scholar

[2] A. Halasz, C. Groom, E. Zhou, L. Paquet, C. Beaulieu, S. Deschamps, A. Corriveau, S. Thiboutot, G. Ampleman, A. Dubois, Detection of explosives and their degradation products in soil environments, J. Chromatogr. A 963 (2002) 411–418.

DOI: 10.1016/s0021-9673(02)00553-8

Google Scholar

[3] M.E. Walsh, T.F. Jenkins, Identification of TNT transformation products in soil, Technical Report CRREL-SR-92-16, Cold Regions Res Eng Lab, Hanover, NH, USA, (1992).

Google Scholar

[4] Duygu Evin. Thin layer drying kinetics of Gundelia tiurnefortii L. [J]. Food and Bioproducts Processing, 2011, 7(2): 261-271.

DOI: 10.1016/j.fbp.2011.07.002

Google Scholar

[5] A.O. Dissa, D.J. Bathiebo, H. Desmorirux, O. Coulibaly, J. Koulidiati. Experimental characterization and modeling of thin layer direct solar drying of Amelie and Brooks mangoes. Energy, 2011, 1(44): 2517-2527.

DOI: 10.1016/j.energy.2011.01.044

Google Scholar

[6] Qiong Xiao, Pingrang Shen. The factor analysis affecting water evaporation in the vacuum drying process [J]. Chinese patent medicine, 2009, 7(31): 1028-103.

Google Scholar

[7] Shu Yinguang, etc. Hexogeon [M]. Chinese Books of Explosives and Propellants, 1974: 90-95.

Google Scholar

[8] Murray F J, Moore C E, Wilczek F J. Microwave resonant absorption of potential exothermic compounds, ADA279798[R]. Springfield: NTIS, (1989).

Google Scholar

[9] Zuo Jun, HAN Chao, YONG Lian. Safety of heating TNT in microwave oven[J]. Energetic Materials, 2006, 14(4), 283-284.

Google Scholar

[10] McIntosh G. Effect of 2. 45 GHz microwave radiation on diverse explosive DREV memorandum , TM 一9702 [R]. Springfield: NTIS, (1998).

Google Scholar

[11] Hayes R W, Frandsen R O. Microwave melt out of explosives from loaded munitions[c]/JANNAF Propellant Development& Characterization Subcommittee and Safety & Environmental Protection Subcommittee Joint Meeting. Columbia: Chemical Propulsion Inform ation Agency Columbia M D , 1998: 345 356.

Google Scholar

[12] Yu Weifei, Zeng Guiyu. Nie Fude. Microwave desiccation of TATB and RDX [J]. Energetic Materials, 2004, 12(2): 101—103.

Google Scholar

[13] Li Yongxiang, Cui Jianlan, Wang Jianlong, Cao Duanli. Study of a New Technology about Microwave Desiccation of RDX [J]. Chinese Journal of Explosives& Propellants, 2008, 31(3): 41—43.

Google Scholar

[14] O'callaghan J R, Menzies D J, Bailey P H. Digital simulation of agricultural drier performance[J]. Journal of Agricultural Engineering Research, 1971, 16(3): 223-244.

DOI: 10.1016/s0021-8634(71)80016-1

Google Scholar

[15] Liu Q, Bakker-Arkema F W. Stochastic modelling of grain drying: Part 2. Model development[J]. Journal of Agricultural Engineering Research, 1997, 66(4): 275-280.

DOI: 10.1006/jaer.1996.0145

Google Scholar

[16] Henderson, S. M., & Pabis, S. (1961). Grain drying theory I. Temperature effect on drying coefficient. Journal of Agricultural Engineering Research, 6(3), 169–174.

Google Scholar

[17] Chhinnman, M. S. (1984). Evaluation of selected mathematical models for describing thin layer drying of in-shell pecans. Transactions of the ASAE, 27, 610–615.

DOI: 10.13031/2013.32837

Google Scholar

[18] Yaldiz O, Ertekin C, Uzun H I. Mathematical modeling of thin layer solar drying of sultana grapes[J]. Energy, 2001, 26(5): 457-465.

DOI: 10.1016/s0360-5442(01)00018-4

Google Scholar

[19] Henderson, S. M. (1974). Progress in developing the thin-layer drying equation. Transactions of the ASAE, 17, 1167–1172.

DOI: 10.13031/2013.37052

Google Scholar

[20] Sharaf-Eldeen, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1980). A model for ear corn drying. Transactions of the ASAE, 23, 1261–1271.

DOI: 10.13031/2013.34757

Google Scholar

[21] Page, G. (1949). Factors influencing the maximum rates of air-drying shelled corn in thin layer. M.S. Thesis. Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.

Google Scholar

[22] Overhults, D. D., White, G. M., Hamilton, M. E., & Ross, I. J. (1973). Drying soybeans with heated air. Transactions of the ASAE, 16, 195–200.

DOI: 10.13031/2013.37459

Google Scholar

[23] Wang, C. Y., & Singh, R. P. (1978). Use of variable equilibrium moisture content in modelling rice drying. ASAE Paper No. 78–6505, ASAE, St. Joseph, MI.

Google Scholar

[24] Midilli, A., & Kucuk, H. (2003). Mathematical modelling of thin layer drying of pistachio by using solar energy. Energy Conversion and Management, 44, 1111–1122.

DOI: 10.1016/s0196-8904(02)00099-7

Google Scholar

[25] Khraisheh, M. A. M., Cooper, T. J. R., & Magee, T. R. A. (1997). The transport mechanism of moisture during air drying processes. Trans IChemE, 75(C), 34–39.

DOI: 10.1205/096030897531342

Google Scholar

[26] Crank, J. (1975). The mathematics of diffusion (2nd ed. ). Oxford, UK: Clarendon Press.

Google Scholar

[27] Babalis, J. S., & Belesssiotis, G. V. (2004). Influence of drying conditions on the drying constants and moisture diffusivity during the thin layer drying of figs. Journal of Food Engineering, 65, 449–458.

DOI: 10.1016/j.jfoodeng.2004.02.005

Google Scholar

[28] Akgun, N. A., & Doymaz, I. (2005). Modeling of olive cake thin-layer drying process. Journal of Food Engineering, 68, 455–461.

DOI: 10.1016/j.jfoodeng.2004.06.023

Google Scholar

[29] Sanjuan, N., Lozano, M., Garcia-Pascal, P., & Mulet, A. (2003). Dehydration kinetics of red pepper (Capsicum annuum L var Jaranda). Journal of the Science of Food and Agriculture, 83, 697–701.

DOI: 10.1002/jsfa.1334

Google Scholar

[30] Ramaswamy, H. S., & van Nieuwenhuijzen, N. H. (2002). Evaluation and modeling of two-stage osmo-convective drying of apple slices. Drying Technology, 20(3), 651–667.

DOI: 10.1081/drt-120002822

Google Scholar

[31] Ertekin C, Yaldiz O. Drying of eggplant and selection of a suitable thin layer drying model[J]. Journal of food engineering, 2004, 63(3): 349-359.

DOI: 10.1016/j.jfoodeng.2003.08.007

Google Scholar

[32] Shi Q, Zheng Y, Zhao Y. Mathematical modeling on thin-layer heat pump drying of yacon (Smallanthus sonchifolius) slices[J]. Energy Conversion and Management, 2013, 71: 208-216.

DOI: 10.1016/j.enconman.2013.03.032

Google Scholar

[33] McMinn W A M. Thin-layer modelling of the convective, microwave, microwave-convective and microwave-vacuum drying of lactose powder[J]. Journal of Food Engineering, 2006, 72(2): 113-123.

DOI: 10.1016/j.jfoodeng.2004.11.025

Google Scholar

[34] Arevalo-Pinedo, A., & Murr, F. E. M. (2006). Kinetics of vacuum drying of pumpkin (Cucurbita maxima): Modeling with shrinkage. Journal of Food Engineering, 76(4), 562–567.

DOI: 10.1016/j.jfoodeng.2005.06.003

Google Scholar

[35] Giri S K, Prasad S. Optimization of microwave-vacuum drying of button mushrooms using response-surface methodology[J]. Drying Technology, 2007, 25(5): 901-911.

DOI: 10.1080/07373930701370407

Google Scholar

[36] Madamba, P. S. et al. (1996). The thin layer drying characteristics of garlic slices. Journal of Food Engineering, 29, 75–97.

DOI: 10.1016/0260-8774(95)00062-3

Google Scholar

[37] Doymaz, I. (2005a). Drying behaviour of green beans. Journal of Food Engineering, 69, 161–165.

Google Scholar

[38] Doymaz, I. (2005b). Drying characteristics and kinetics of okra. Journal of Food Engineering, 69, 275–279.

Google Scholar