The Characteristics of Biological Nutrient Removal in a SBR through Aerobic Granular Sludge

Article Preview

Abstract:

The characteristics of biological nutrient removal was investigated with aerobic granular sludge in an anaerobic/aerobic SBR system. The anaerobic/aerobic SBR system showed a very stable phosphorus, nitrogen and organic carbon removal performance. The average removal rate for NH4+-N, total inorganic nitrogen (TIN), PO43--P and CH3COO--C reached 97.8%, 89.7%, 96.8% and 98.8%, respectively, when dissolved oxygen concentration in the aerobic phase was controlled at 1~2mg/L, with 80~90min anaerobic phase followed by 240min aerobic phase during the SBR cycle. The nitrification, denitrification, aerobic phosphate uptake and anoxic phosphate uptake could occur simultaneously in aerobic granular sludge under aerobic condition. The microorganism population in the granular sludge has a diversification, the formed microecosystem is more stable and the ability to withstand shock loading and the self-regulation ability are stronger.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

161-167

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Weissenbacher N, Loderer C, Lenz K: Water Res, Vol. 41(2007), p.397.

Google Scholar

[2] Lemaire R, Yuan Z G, Blackall L L: Environ Microbiol, Vol. 10 (2008), p.354.

Google Scholar

[3] de Bruin LMM, Kreuk MK, de Roest HFR, van der Uijterlinde C, van Loosdrecht MCM: Wat. Sci Technol. Vol. 49 (2004), p.1.

DOI: 10.2166/wst.2004.0790

Google Scholar

[4] C. Di Iaconi, R. Ramadori, A. Lopez, R. Passino: Environ. Sci. Technol. Vol. 39 (2005), p.889.

Google Scholar

[5] G. Pastorelli, R. Canziani, L. Pedrazzi: Wat. Sci. Technol. Vol. 40 (1999), p.169.

Google Scholar

[6] Y.Q. Liu, B. Moy, Y.H. Kong, J.H. Tay: Enz. and Micro. Technol. Vol. 46 (2010), p.520.

Google Scholar

[7] Kishida N, KimJ, Tsuneda S: Water Res, Vol. 40 (2006), p.2303.

Google Scholar

[8] Liu YQ, Tay JH, Ivanov V, Moy BYP, Liu Y, Tay STL: Process Biochem Vol. 40 (2005), p.3285.

Google Scholar

[9] G.J.F. Smolders, J. Klop, M.C.M. van Loosdrecht, J.J. Heijnen: Biotechnol. Bioeng. Vol. 48 (1995), p.222.

Google Scholar

[10] Beun JJ, Hendriks A, Van Loosdrecht MCM, Morgenroth E, Wilderer PA, Heijnen JJ: Wat Res Vol. 33 (1999), p.2283.

DOI: 10.1016/s0043-1354(98)00463-1

Google Scholar

[11] Lee D S, Jeon C O, Park J M: Wat. Res., Vol. 35 (2001), p.3968.

Google Scholar

[12] Q. Wang, G.C. Du, J. Chen: Process Biochemistry Vol. 39 (2004), p.557.

Google Scholar

[13] Kuba T, van Loosdrecht M C M, Heijnen J J: Water Sci Tech, Vol. 34 (1996), p.33.

Google Scholar

[14] Yilmaz G, Lemaire R, Keller J: Biotechnol Bioeng, Vol. 100 (2008), p.529.

Google Scholar

[15] Adav S S, Lee D J, Show K Y: Biotechnology Advances, Vol. 26 (2008), p.411.

Google Scholar

[16] Adav S S, Lee D J, Ren N Q: Water Research, Vol. 41 (2007), p.2903.

Google Scholar

[17] CassidyD P, Belia E: Wat. Res., Vol. 39 (2005), p.4817.

Google Scholar

[18] APHA. Standard methods for the Examination of Water and Wastewater. 19th ed. (American Public Health Association, Washington DC 2005).

Google Scholar