Kinetics and Mechanism of Platinum Pressure-Cyanide Dissolution

Article Preview

Abstract:

A research study has been undertaken to develop the fundamentals of a method for the direct dissolution of metal platinum. At room temperature and pressures, the reaction between sodium cyanide and platinum group metals (PGMs) does not occur because of poor kinetics. However, at elevated temperatures, PGMs can be dissolved by sodium cyanide like the reaction of gold. In this work, the dissolution of Platinum was measured in pressure clear cyanide solution. The data at different cyanide concentrations, temperature and oxygen pressure are obtained. With increasing cyanide concentration and oxygen pressure, the dissolution first increased to a maximum value and then decreased. With increasing temperature the dissolution is increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

424-428

Citation:

Online since:

February 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M.E. Wadsworth, X. Zhu, J.S. Thompson and C.J. Pereira: Hydrometallurgy Vol. 57(2000),P. 1.

Google Scholar

[2] J.E. Hoffmann: Journal of Metals, Vol. 40(1988), P. 40–44.

Google Scholar

[3] W.J. Bruckard, K.J. McDonald, C.M. McInnes, G.J. Sparrow and J.T. Woodcock: Hydrometallurgy, Vol. 30 (1992), P. 211–217.

Google Scholar

[4] C.M. McInnes, G.J. Sparrow and J.T. Woodcock: Hydrometallurgy Vol. 31(1993), P. 157–164.

Google Scholar

[5] J. Chen and K. Huang: Hydrometallurgy Vol. 82(2006), P. 164–171.

Google Scholar

[6] K. Huang and J. Chen: Acta of Metals(In Chinese) Vol. 40(2004), P. 270–274.

Google Scholar

[7] J. Chen, K. Huang and Y.R. Chen South African Patent. No. 2005/05141(2005).

Google Scholar

[8] J. Chen and K. Huang: Nonferrous Metals(In Chinese) Vol. 56 (2004) P. 70.

Google Scholar

[9] J. Chen and K. Huang: Chinese Patent: ZL 02122502. 8(2001).

Google Scholar

[10] F. Ample, A. Clotet, J. M. Ricart: Surface Science, Vol. 558 (2004) , P. 111.

Google Scholar

[11] Xue-Bin Wang, Yi-Lei Wang, Hin-Koon Woo, Jun Li, Guo-Shi Wu, Lai-Sheng Wang, Chemical Physics, 329 (2006) 230–238.

Google Scholar

[12] Christopher Matranga, Philippe Guyot-Sionnest, Chemical Physics Letters, 340 (2001) 39-44.

Google Scholar

[13] M. Tadjeddine, J.P. Flament and A. Le Rille: Surface Science Vol. 600 (2006) , P. 2138.

Google Scholar

[14] B. Ren, X.Q. Li and D.Y. Wu: Chemical Physics Letters Vol. 322( 2000) ,P. 561.

Google Scholar

[15] M.E. Wadsworth), X. Zhu, J.S. Thompson, C.J. Pereira, Hydrometallurgy 57(2000) 1–11.

Google Scholar

[16] C. Clay, L. d. Cummings and A. d. Hodgson: Surface Science, Vol. 60 (2007) , P. 562.

Google Scholar

[17] J.Y. Han, D. Y. Zemlyanov and F. H. Ribeiro: Surface Science, Vol. 600 (2006) , P. 2752.

Google Scholar

[18] M.I. Jeffrey and I.M. Ritchie: J. Electrochem. Soc. Vol. 148 (2001) , P. D29.

Google Scholar

[19] Fusao Kitamura, Machiko Takahashi, Masatoki Ito, Chemical Physics Letters, 136(1) : 1987, 62-66.

Google Scholar

[20] H. Tamura, T. Arikado, H. Yoneyama and Y. Matsuda, Electrochimica Acta, 1974, 19(6): 273-277.

DOI: 10.1016/0013-4686(74)85078-4

Google Scholar