[1]
S. J. Binnerup, K. Jensen, N.P. Revsbech, et al. Denitrification, dissimilatory reduction of nitrate to ammonium, and nitrification in a bioturbated estuarine sediment as measured with 15n and microsensor techniques[J]. Applied and Environmental Microbiology, 1992, 58: 303-313.
DOI: 10.1128/aem.58.1.303-313.1992
Google Scholar
[2]
R. Sinsabaugh and S. Findlay. Microbial production, enzyme activity, and carbon turnover in surface sediments of the hudson river estuary[J]. Microbial. Ecology, 1995, 30: 127-141.
DOI: 10.1007/bf00172569
Google Scholar
[3]
J.L. Pinckney, H.W. Paerl, P. Tester, et al. The role of nutrient loading and eutrophication in estuarine ecology. Environmental Health Perspectives, 2001, 109: 699.
DOI: 10.2307/3454916
Google Scholar
[4]
T. Yokokawa and T. Nagata. Linking bacterial community structure to carbon fluxes in marine environments[J]. Journal of Oceanography, 2010, 66: 1-12.
DOI: 10.1007/s10872-010-0001-4
Google Scholar
[5]
N. Pimenov, M. Ulyanova, T. Kanapatsky, et al. Microbially mediated methane and sulfur cycling in pockmark sediments of the gdansk basin, baltic sea. Geo-Marine Letters, 2010, 30: 439-448.
DOI: 10.1007/s00367-010-0200-4
Google Scholar
[6]
A.E. Bernhard, T. Donn, A.E. Giblin, et al. Loss of diversity of ammonia-oxidizing bacteria correlates with increasing salinity in an estuary system[J]. Environmental Microbiology, 2005, 7(9): 1289-1297.
DOI: 10.1111/j.1462-2920.2005.00808.x
Google Scholar
[7]
A. Pernthaler, J. Pernthaler, R. Amann. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Applied and Environmental Microbiology, 2002, 68: 3094.
DOI: 10.1128/aem.68.6.3094-3101.2002
Google Scholar
[8]
T.E. Freitag, L. Chang, J.I. Prosser. Changes in the community stucture and activity of betaproteobacterial ammonia-oxidizing sediment bacteria along a freshwater-marine gradient[J]. Environmental Microbiology, 2006, 8(4): 684-696.
DOI: 10.1111/j.1462-2920.2005.00947.x
Google Scholar
[9]
D.J. Scala, L.J. Kerkhof. Horizontal heterogeneity of denitrifyingbacterial communities in marine sediments by terminal restriction fragment length polymorphism analysis[J]. Applied and Environmental Microbiology, 2000, 66: (1980).
DOI: 10.1128/aem.66.5.1980-1986.2000
Google Scholar
[10]
F.L. Sun, Y.S. Wang, M.L. Wu, et al. Spatial and vertical distribution of bacteria in the Pearl River estuary sediment[J]. African Journal of Biotechnology, 2012, 11(9): 2256-2266.
DOI: 10.5897/ajb11.568
Google Scholar
[11]
Environmental Protection Administration of China. 2002. The surface water environmental quality standard of China(GB3838-2002), 2006. (in Chinese).
Google Scholar
[12]
The ministry of health of the People's Republic of China. 2006. The standard test methods of drinking water health(GB/T5750-2006), T57502. 2006. (in Chinese).
Google Scholar
[13]
J. Zhang, W. Chen. Analysis of the microbial community structure in the Yellow River sanmenxia wetland. Journal of Sanmenxia Polytechnic. 2011, 10(3): 106-108 (in Chinese).
Google Scholar
[14]
H. Li, W.S. Guan, E.M. Ouyang, et al. DGGE technique and its application in environmental microbiology. Environmental science and management, 2008, 33(10): 93-96 (in Chinese).
Google Scholar
[15]
Y. Jia, C.J. Sun, W.Y. Han, et al. A review of Klebsiella pneumoniae. Journal of microbiology, 2006, 26(5): 75-78 (in Chinese).
Google Scholar