Mechanism of Cu2+ Ions Removal from Aqueous Solution with PBTCA Modified Fe0 Nanoparticles

Article Preview

Abstract:

Applications of PBTCA modified nanoscale zero valent iron (P-Fe0) prepared by borohydride reduction for removal of Cu2+ ions from aqueous solution are investigated under a variety of experimental conditions. According to X-ray photoelectron spectroscopy (XPS) results, Cu2+ ions were removed primarily via a redox mechanism that resulted in the formation of Cu0 and Cu2O. The contact of P-Fe0 with aqueous media caused extensive formation of iron oxide.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

454-457

Citation:

Online since:

February 2014

Keywords:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Komnitsas K, Bartzas G, Fytas K, Paspaliaris I, Minerals Engineering, 2007. 20(13): 1200 -1209.

DOI: 10.1016/j.mineng.2007.05.002

Google Scholar

[2] Chen Y W, Wang J L, Environmental science, 2009. 30(11): 3353- 3357.

Google Scholar

[3] Tratnyek P G, Johnson R L, Nanotoday, 2006. 1(2): 44-48.

Google Scholar

[4] Nurmi J T, Tratnyek P G, Sarathy V, Baer D R, Amonette J E, Pecher K, Wang C, Linehan J C, Matson D W, Penn R L, Driessen M D, Environmental Science and Technology, 2005. 39(5): 1221-1230.

DOI: 10.1021/es049190u

Google Scholar

[5] Rao P H, Xiao W F, Xu J L, Environmental Pollution and Control, 2009. 31(6): 43-46.

Google Scholar

[6] Giasuddin A B M, Kanel S R, Choi H, Environmental Science and Technology, 2007. 41 (6): 2022-(2027).

Google Scholar

[7] Huang Y Y, Liu D D, Liu F, Ecology and Environmental Sciences. 2009. (18)1: 83-87.

Google Scholar

[8] Débora V F, Leonardo M D S, Wilson F J, Water, Air , & Soil Pollution, 2009. 197(1-4): 49-60.

Google Scholar

[9] Ai Z H, Cheng Y, Zhang L Z, Qiu J R, Environmental Science and Technology, 2008. 42(18): 6955-6960.

Google Scholar

[10] Malkoc E, Nuhoglu Y, Separation and Purification Technology, 2007. 54(3): 291–298.

Google Scholar

[11] Yang J E, Kim J S, Ok Y S, Yoo K R, Water Science and Technology, 2007. 55 (1–2): 197–202.

Google Scholar

[12] Liu Q Y, Bei Y L, Zhou F, Central European Journal of Chemisrty, 2009. 7(1): 79-82.

Google Scholar

[13] Wagner C D, 1957. Chemical shift of Auger lines, and the Auger parameter. Faraday Discuss Chemistry Society, 60: 291-300.

DOI: 10.1039/dc9756000291

Google Scholar

[14] Li X Q, Zhang W X, Journal of Physical Chemistry C, 2007. 111(19): 6939-6946.

Google Scholar

[15] Karabelli D¸ Üzüm C, Shahwan T, Eroğlu A E, Scott T B, Hallam K R, Lieberwirth L, Industrial & Engineering Chemistry Research, 2008. 47(14): 4758-4764.

DOI: 10.1021/ie800081s

Google Scholar

[16] Lai K C K, Lo I M C, Environmental Science and Technology, 2008. 42(4): 1238-1244.

Google Scholar

[17] Teng X W, Black D, Watkins N J, Gao Y L, Yang H, Nano Letters, 2003. 3(2): 261-264.

Google Scholar

[18] Fiedor J N, Bostick W D, Jarabek R J, Farrell J, Environmental Science and Technology, 1998. 32(10) 1466-1473.

Google Scholar