[1]
Eduardo G. Altmann and Tamas Tel.: Probability density of the Lorenz Model. Phys. Rev. A, 27, 2, 1983, pp.1096-1105.
Google Scholar
[2]
Peter Jung and Peter Hanggi: invariant measure of a driven nonlinear oscillator with external noise. Phys. Rev. Letter, 65, 21, 1990, pp.3365-3368.
DOI: 10.1103/physrevlett.65.3365
Google Scholar
[3]
A. Lasota, M.C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, Springer-Verlag, New York, (1994).
Google Scholar
[4]
Ryszard Runnicki, Katarzyna Pichor, Marta Tyran Kaminska.: Markove semigroups and their applications, Published in Dynamics of Dissipation, P. Garbaczewski and R. Olkiewicz (eds. ), Lecture Notes in Physics. vol. 597, Springer, Berlin, pp.215-238, (2002).
Google Scholar
[5]
R. Riganti and M. G. Zavattaro; Invariant Probability and Entropy Measures for Multidimensional Maps of Chaotic Attractors. Int. Computers Math. Applic., 32(10), pp.7-16, (1996).
DOI: 10.1016/s0898-1221(96)00182-4
Google Scholar
[6]
Z. Kaufmannl and H. Lustfeld: Comparison of averages of flows and maps. Physical Review E, 64, 055206, 2001, pp.055206-4.
Google Scholar
[7]
Brian R. Hunt, Judy A. Kennedy, Tien-Yien Li, Helena E. Nusse. SLYRB measures: natural invariant measures for chaotic systems. Physica D, 170, 2002, pp.50-71.
DOI: 10.1016/s0167-2789(02)00445-1
Google Scholar
[8]
Peter Jung and Peter Hanggi: Poincare recurrences from perspective of transient chaos. Phys. Rev. Letter, 100.
Google Scholar
[9]
R. Rajarama,U. Vaidyab, M. Fardadc, B. Ganapathysubramanian: Stability in the almost everywhere sense: A linear transfer operator approach J. Math. Anal. Appl. 368, 2010, pp.144-156.
DOI: 10.1016/j.jmaa.2010.02.032
Google Scholar
[10]
R.Z. Has'minskii: stochastic Stability of Differential Equations, Sijthoff and Noordhoff , (1980).
Google Scholar
[11]
Liming Wu, Yiping Zhang: A new topological approach to the L^\infty-uniqueness of operators and the L^1 uniqueness of Fokker-Planck Equations. Journal of Functional Analysis, 241, 2006, pp.557-610.
DOI: 10.1016/j.jfa.2006.04.020
Google Scholar