Strong Consistency of Maximum Likelihood Estimators in Extreme-Maximum-Value Distribution Model

Article Preview

Abstract:

For the extreme-maximum-value distribution model, we show that maximum likelihood estimates of regression parameter vector is asymptotically existence and strongly consistent under mild conditions

You might also be interested in these eBooks

Info:

Periodical:

Pages:

671-676

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Fahrmeir, H. Kanfmann. Ann Statist, Vol. 13(1985), pp.342-368.

Google Scholar

[2] L. Fahrmeir, G. Tutz. Multivariate statistcal modelling based on generalized linear models, pp.63-95, New York: Springer-Verlag(1994).

DOI: 10.1007/978-1-4899-0010-4_3

Google Scholar

[3] R. W. M. Wedderburn. Biometrika, Vol. 61(1974), pp.439-447.

Google Scholar

[4] K. Y. Liang, S. L. Zeger. Biometrika, Vol. 73(1986), pp.13-22.

Google Scholar

[5] L. Fahrmeir. Statistic, Vol. 21(1990), pp.487-502.

Google Scholar

[6] L. Yue, X. R. Chen. Science in China Ser A, Vol. 47(2004), pp.882-893.

Google Scholar

[7] J. L. Ding, X. R. Chen. Acta Mathematica Scientia, Ser. A, Vol. 26(2006), pp.168-173(in Chinese).

Google Scholar

[8] Y. C. I. Chang. Statist Probab Lett, Vol. 45(1999), pp.237-246.

Google Scholar

[9] C. M. Yin, L. C. Zhao, C. D. Wei. Science in China Ser A, Vol. 48(2006), pp.145-157.

Google Scholar

[10] L. Fahrmeir, H. Kaufmann. Statist Hefte, Vol. 27(1986), pp.179-205.

Google Scholar

[11] G. Bennett. J. Amer. Statist. Assoc. Vol. 57(1962), pp.33-45.

Google Scholar