Object's Centroid Localization Using Hu-Flusser's Moments Invariant

Article Preview

Abstract:

A combination between two components generally requires screws for assemble them together with high precision and accuracy that is need in industrial application. This research proposes the machine vision technique using Hu-Flussers moments invariant to locate centroids of target screws from a tray for loading instead of the current human vision in manual operation. To validate precision and accuracy template matching is tested in parallel with Hu-Flussers moments invariant. The results show that Hu-Flussers moments invariant is better in terms of precision and have robust ability to exclude outlier too.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

316-323

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Wanchat, S. Plermkamon, D. Chetchotsak, and N. Homsin, Visual Detection 1. 1 mm Hole Diameter for Attaching Flexible Cable Assembly to Head Suspension Assembly, in International data storage technology conference, Bankok, (2011).

Google Scholar

[2] W. -H. Wong, W. -C. Siu, and K. -M. Lam, Generation of moment invariants and their uses for character recognition, Pattern Recognition Letters, vol. 16, pp.115-123, (1995).

DOI: 10.1016/0167-8655(94)00089-l

Google Scholar

[3] J. Flusser and T. Suk, Rotation Moment Invariants for Recognition of Symmetric Objects, Image Processing, IEEE Transactions on, vol. 15, pp.3784-3790, (2006).

DOI: 10.1109/tip.2006.884913

Google Scholar

[4] S. -D. Wei and S. -H. Lai, Fast Template Matching Based on Normalized Cross Correlation With Adaptive Multilevel Winner Update, Image Processing, IEEE Transactions on, vol. 17, pp.2227-2235, (2008).

DOI: 10.1109/tip.2008.2004615

Google Scholar

[5] W. -x. Lai, W. Wang, B. -b. Huang, H. Ren, and T. -l. Shi, Fast Template Matching Based on Local Entropy Difference, " in Image and Signal Processing, 2009. CISP , 09. 2nd International Congress on, 2009, pp.1-5.

DOI: 10.1109/cisp.2009.5302155

Google Scholar

[6] M. Mori and K. Kashino, Fast Template Matching Based on Normalized Cross Correlation Using Adaptive Block Partitioning and Initial Threshold Estimation, in Multimedia (ISM), 2010 IEEE International Symposium on, 2010, pp.196-203.

DOI: 10.1109/ism.2010.36

Google Scholar

[7] G. R. Baek, Y. H. Mo, J. S. Jeong, J. M. Park, and M. T. Lim, Cognition System Of Bolt Hole Using Template Matching, in the 28th International Symposium on Automation and Robotics in Construction, Korea, (2011).

DOI: 10.22260/isarc2011/0128

Google Scholar

[8] R. C. Gonzalez, R. E. Woods, and S. L. Eddins, Digital Image Processing Using MATLAB, 1 edition ed.: Pearson Prentice Hall, (2004).

Google Scholar

[9] M. -K. Hu, Visual pattern recognition by moment invariants, Information Theory, IRE Transactions on, vol. 8, pp.179-187, (1962).

DOI: 10.1109/tit.1962.1057692

Google Scholar

[10] H. R. Boveiri, On Pattern Classification Using Statistical Moments, International Journal of Signal Processing, Image Processing and Pattern Recognition, vol. 3, (2010).

Google Scholar

[11] J. Flusser, T. Suk, and B. Zitova, Moments and Moment Invariants in Pattern Recognition: Wiley, (2009).

Google Scholar

[12] J. Flusser, On the independence of rotation moment invariants, Pattern Recognition, vol. 33, pp.1405-1410, (2000).

DOI: 10.1016/s0031-3203(99)00127-2

Google Scholar

[13] H. R. Boveiri, Persian Printed Numerals Classification Using Extended Moment Invariants, in International Conference on Image and Vision Computing, Rio de Janeiro, 2010, pp.167-174.

Google Scholar