Rapid Fabrication of Large-Area SiO2 Nanoparticle Monolayer Films Via Water-Induced Interfacial Assembly

Article Preview

Abstract:

Water/toluene interfacial self-assembly of nanostructures is a powerful bottom-up approach for film fabrication because of the low cost and high efficiency, and it is a simple and universal method for almost all low-dimensional nanostructures. The method involved adding alcohol and then toluene (here the dispersant was itself alcohol, only toluene was added) into SiO2 nanoparticle dispersion, and then a large quantity of distilled water was rapidly poured into the mixed system. Simultaneously, nanoparticles in the dispersion were extracted to the water/toluene interface, forming a thin film with a nearly perfect hexagonal close packed phase. Large-area nanoparticle monolayer films (e.g., more than 20 cm2) could be prepared in less than 1 min. The close-packed structures of these thin films were verified by a field emission scanning electron microscopy (FESEM, Hitachi S-4800, Japan). We also investigated the whole process of forming the films and found out the mechanism of water-induced interfacial assembly. As for the specific kinetic mechanism of the fabrication process, it is expected to further study in later time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-117

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Li, H. Schnablegger, S. Mann, Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization, Nature. 402 (1999) 393-395.

DOI: 10.1038/46509

Google Scholar

[2] G. Yu, A. Cao, C. M. Lieber, Large-area blown bubble films of aligned nanowires and carbon nanotubes, Nat. Nanotechnol. 2 (2007) 372-377.

DOI: 10.1038/nnano.2007.150

Google Scholar

[3] J. H. Lee, S. W. Rhee, D. Y. Jung, Selective Layer Reaction of Layer-by-Layer Assembled Layered Double-Hydroxide Nanocrystals, J. Am. Chem. Soc. 129 (2007) 3522-3523.

DOI: 10.1021/ja070512e

Google Scholar

[4] H. Shimoda, S. J. Oh, H. Z. Geng, R. J. Walker, X. B. Zhang, L. E. McNeil, O. Zhou, Self-Assembly of Carbon Nanotubes, Adv. Mater. 14 (2002) 899-901.

DOI: 10.1002/1521-4095(20020618)14:12<899::aid-adma899>3.0.co;2-2

Google Scholar

[5] M. Osada, Y. Ebina, H. Funakubo, S. Yokoyama, T. Kiguchi, K. Takada, T. Sasaki, High-κ Dielectric Nanofilms Fabricated from Titania Nanosheets, Adv. Mater. 18 (2006) 1023-1027.

DOI: 10.1002/adma.200501224

Google Scholar

[6] A. Panneerselvam, M. A. Malik, M. Afzaal, P. O. Brien, M. Helliwell, The Chemical Vapor Deposition of Nickel Phosphide or Selenide Thin Films from a Single Precursor, J. Am. Chem. Soc. 130 (2008) 2420-2421.

DOI: 10.1021/ja078202j

Google Scholar

[7] X. Li, C. W. Magnuson, A. Venugopal, J. An, J. Suk, B. Han, M. Borysiak, W. Cai, A. Velamakanni, Y. Zhu, L. Fu, E. Vogel, E. Voelkl, L. Colombo, R. S. Ruoff, Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process, Nano Lett. 10 (2010).

DOI: 10.1021/nl101629g

Google Scholar

[8] S. M. George, Atomic Layer Deposition: An Overview, Chem. Rev. 110 (2010) 111-131.

Google Scholar

[9] J. R. Bakke, H. J. Jung, J. T. Tanskanen, R. Sinclair, S. F. Bent, Atomic Layer Deposition of CdS Films, Chem. Mater. 22 (2010) 4669-4678.

DOI: 10.1021/cm100874f

Google Scholar

[10] X. J. Xing, Y. P. Yu, L. M. Xu, S. X. Wu, S. W. Li, Magnetic Properties of β-MnO2 Thin Films Grown by Plasma-Assisted Molecular Beam Epitaxy, J. Phys. Chem.C. 112 (2008) 15526-15531.

DOI: 10.1021/jp801694e

Google Scholar

[11] B. Fuhrmann, H. S. Leipner, H. Hoche, L. Schubert, P. Werner, U. Gosele, Ordered Arrays of Silicon Nanowires Produced by Nanosphere Lithography and Molecular Beam Epitaxy, Nano Lett. 5 (2005) 2524-2527.

DOI: 10.1021/nl051856a

Google Scholar

[12] P. T. Hammond, Form and Function in Multilayer Assembly: New Applications at the Nanoscale, Adv. Mater. 16 (2004) 1271-1293.

DOI: 10.1002/adma.200400760

Google Scholar

[13] D. Yogev, S. Efrima, Novel Silver Metal Liquidlike Fllms, J. Phys. Chem. 92 (1988) 5754-5760.

DOI: 10.1021/j100331a041

Google Scholar

[14] Y. Lin, H. Skaff, T. Emrick, A. D. Dinsmore, T. P. Russell, Nanoparticle Assembly and Transport at Liquid-Liquid Interfaces, Science. 299 (2003) 226-229.

DOI: 10.1126/science.1078616

Google Scholar

[15] L. L. Dai, R. Sharma, C. -Y. Wu, Self-Assembled Structure of Nanoparticles at a Liquid-Liquid Interface, Langmuir. 21 (2005) 2641-2643.

DOI: 10.1021/la047256t

Google Scholar

[16] H. Schwartz, Y. Harel, S. Efrima, Surface Behavior and Buckling of Silver Interfacial Colloid Films, Langmuir. 17 (2001) 3884-3892.

DOI: 10.1021/la0100690

Google Scholar

[17] A. Kumar, S. Mandal, S. P. Mathew, P. R. Selvakannan, A. B. Mandale, R. V. Chaudhari, M. Sastry, Benzene- and Anthracene-Mediated Assembly of Gold Nanoparticles at the Liquid-Liquid Interface, Langmuir. 18 (2002) 6478-6483.

DOI: 10.1021/la025827g

Google Scholar

[18] A. Berman, N. Belman, Y. Golan, Controlled Deposition of Oriented PbS Nanocrystals on Ultrathin Polydiacetylene Templates at the Air-Solution Interface, Langmuir. 19 (2003) 10962-10966.

DOI: 10.1021/la035419s

Google Scholar

[19] R. A. W. Dryfe, A. O. Simm, B. Kralj, Electroless Deposition of Palladium at Bare and Templated Liquid/Liquid Interfaces, J. Am. Chem. Soc. 125 (2003) 13014-13015.

DOI: 10.1021/ja037599y

Google Scholar

[20] Y. -K. Park, S. H. Yoo, S. Park, Assembly of Highly Ordered Nanoparticle Monolayers at a Water/Hexane Interface, Langmuir. 23 (2007) 10505-10510.

DOI: 10.1021/la701445a

Google Scholar

[21] Y. -K. Park, S. Park, Directing Close-Packing of Midnanosized Gold Nanoparticles at a Water/Hexane Interface, Chem. Mater. 20 (2008) 2388-2393.

DOI: 10.1021/cm703498y

Google Scholar

[22] Y. -K. Park, S. -H. Yoo, S. Park, Three-Dimensional Pt-Coated Au Nanoparticle Arrays: Applications for Electrocatalysis and Surface-Enhanced Raman Scattering, Langmuir. 24 (2008) 4370-4375.

DOI: 10.1021/la703169e

Google Scholar

[23] Y. J. Li, W. J. Huang, S. G. Sun, A Universal Approach for the Self-Assembly of Hydrophilic Nanoparticles into Ordered Monolayer Films at a Toluene/Water Interface, Angew. Chem., Int. Ed. 45 (2006) 2537-2539.

DOI: 10.1002/anie.200504595

Google Scholar

[24] P. Arumugam, D. Patra, B. Samanta, S. S. Agasti, C. Subramani, V. M. Rotello, Self-Assembly and Cross-linking of FePt Nanoparticles at Planar and Colloidal Liquid-Liquid Interfaces, J. Am. Chem. Soc. 130 (2008) 10046-10047.

DOI: 10.1021/ja802178s

Google Scholar

[25] J. Matsui, M. Iko, N. Inokuma, H. Orikasa, T. Kyotani, T. Miyashita, Simple Fabrication of Carbon Nanotube Monolayer Film, Chem. Lett. 35 (2006) 42-43.

DOI: 10.1246/cl.2006.42

Google Scholar

[26] J. Matsui, K. Yamamoto, N. inokuma, H. Orikasa, T. Kyotani, T. Miyashita, Fabrication of densely packed multi-walled carbon nanotube ultrathin films using a liquid-liquid interface, J. Mater. Chem. 17 (2007) 3806-3811.

DOI: 10.1039/b706695c

Google Scholar

[27] J. Matsui, K. Yamamoto, N. Inokuma, H. Orikasa, T. Kyotani, T. Miyashita, Multi-Walled Carbon Nanotube Ultrathin Film Using a Liquid-Liquid Interface: Effect of Alcohol Type to the Film Property, Mol. Cryst. Liq. Cryst. 491 (2008) 9-13.

DOI: 10.1080/15421400802328576

Google Scholar

[28] J. Matsui, K. Yamamoto, T. Miyashita, Assembly of untreated single-walled carbon nanotubes at a liquid-liquid interface, Carbon. 47 (2009) 1444-1450.

DOI: 10.1016/j.carbon.2009.01.033

Google Scholar

[29] Y. Zhang, Y. Shen, D. Kuehner, S. We, S. Zu, S. Ye, L. Niu, Directing single-walled carbon nanotubes to self-assemble at water/oil interfaces and facilitate electron transfer, Chem. Commun. (2008) 4273-4275.

DOI: 10.1039/b805789c

Google Scholar

[30] P. Asuri, S. S. Karajanagi, J. S. Dordick, R. S. Kane, Directed Assembly of Carbon Nanotubes at Liquid-Liquid Interfaces: Nanoscale Conveyors for Interfacial Biocatalysis, J. Am. Chem. Soc. 128 (2006) 1046-1047.

DOI: 10.1021/ja0573965

Google Scholar

[31] S. Yun, Y. -K. Park, S. K. Kim, S. Park, Linker-Molecule-Free Gold Nanorod Layer-by-Layer Films for Surface-Enhanced Raman Scattering, Anal. Chem. 79 (2007) 8584-8589.

DOI: 10.1021/ac071440c

Google Scholar

[32] S. Yun, M. K. Oh, S. K. Kim, S. Park, Linker-Molecule-Free Gold Nanorod Films: Effect of Nanorod Size on Surface Enhanced Raman Scattering, J. Phys. Chem.C. 113 (2009) 13551-13557.

DOI: 10.1021/jp9024624

Google Scholar

[33] H. -Y. Shi, B. Hu, X. -C. Yu, R. -L. Zhao, X. -F. Ren, S. -L. Liu, J. -W. Liu, M. Feng, A. -W. Xu, S. -H. Yu, Ordering of Disordered Nanowires: Spontaneous Formation of Highly Aligned, Ultralong Ag Nanowire Films at Oil-Water-Air Interface, Adv. Funct. Mater. 20 (2010).

DOI: 10.1002/adfm.200901668

Google Scholar

[34] L. F. Hu, R. Ma, T. C. Ozawa, F. Geng, N. Iyi, T. Sasaki, Oriented films of layered rare-earth hydroxide crystallites self-assembled at the hexane/water interface, Chem. Commun. (2008) 4897-4899.

DOI: 10.1039/b812111g

Google Scholar

[35] L. F. Hu, R. Ma, T. C. Ozawa, T. Sasaki, Oriented Monolayer Film of Gd2O3: 0. 05 Eu Crystallites: Quasi-Topotactic Transformation of the Hydroxide Film and Drastic Enhancement of Photoluminescence Properties, Angew. Chem., Int. Ed. 48 (2009).

DOI: 10.1002/anie.200806206

Google Scholar

[36] L. F. Hu, R. Ma, T. C. Ozawa, T. Sasaki, Synthesis of a Solid Solution Series of Layered EuxGd1-x(OH)2. 5Cl0. 5•0. 9H2O and Its Transformation into (EuxGd1-x)2O3 with Enhanced Photoluminescence Properties, Inorg. Chem. 49 (2010) 2960-2968.

DOI: 10.1002/chin.201028009

Google Scholar

[37] S. Biswas, L. T. Drzal, A Novel Approach to Create a Highly Ordered Monolayer Film of Graphene Nanosheets at the Liquid-Liquid Interface, Nano Lett. 9 (2009) 167-172.

DOI: 10.1021/nl802724f

Google Scholar

[38] Z. Tang, J. Zhuang, X. Wang, Exfoliation of Graphene from Graphite and Their Self-Assembly at the Oil-Water Interface, Langmuir. 26 (2010) 9045-9049.

DOI: 10.1021/la9049082

Google Scholar

[39] P. Pieranski, Two-Dimensional Interfacial Colloidal Crystals, Phys. Rev. Lett. 45 (1980) 569-572.

DOI: 10.1103/physrevlett.45.569

Google Scholar

[40] Y. Lin, H. Skaff, T. Emrick, A. D. Dinsmore, T. P. Russell, Nanoparticle Assembly and Transport at Liquid-Liquid Interfaces, Science. 299 (2003) 226-229.

DOI: 10.1126/science.1078616

Google Scholar

[41] B. A. Grzybowski, C. J. Campbell, Complexity and dynamic self-assembly, Chem. Eng. Sci. 59 (2004) 1667-1669.

Google Scholar