Multidisciplinary Computer Simulation of Transient Electromagnetic-Thermal Phenomena in a Turbogenerator Rotor

Article Preview

Abstract:

A finite element technique and computer code for the numerical analysis of 3D transient electromagnetic fields and temperature distribution due to negative sequence currents in large synchronous turbogenerator rotors are developed. Electromagnetic-thermal phenomena in a 300 MVA class turbogenerator rotor during a line-to-line short circuit on two phases of the machine are numerically investigated. Effect of the various conditions of the rotor cooling on its thermal state is studied. Numerical results obtained can be used for the computer simulation of the thermo-mechanical behaviour of the rotor.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

278-284

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] O. Drubel, Future challenges within numerical field calculation in industrial machine development in the power range from 200 kW to 200 MW, Proc. 6th Int. Conference on Computational Electromagnetics (CEM'2006), Aachen, Germany (April 2006) 1-3.

Google Scholar

[2] M.G. Pantelyat, A.N. Saphonov, N.G. Shulzhenko, Finite element analysis of the electromagnetic field in synchronous turbogenerator rotor slot wedges, Proc. 14th Int. IGTE Symposium on Numerical Field Calculation in Electrical Engineering, Graz, Austria (September 2010) 76-80.

DOI: 10.1049/cp.2011.0039

Google Scholar

[3] M.G. Pantelyat, N.G. Shulzhenko, Finite element analysis of electromagnetic field and losses in a turbogenerator rotor, Proc. 6th Int. Conference on Computational Electromagnetics (CEM'2006), Aachen, Germany (April 2006) 151-152.

DOI: 10.1049/cp.2011.0039

Google Scholar

[4] O. Drubel, Die Berechnung der elektromagnetischen und thermischen Beanspruchung von Turbogeneratoren während elektrischer Störfälle mittels Finiter-Differenzen-Zeitschritt-Methode, Electrical Engineering, 82 (2000) 327-338.

DOI: 10.1007/s002020000041

Google Scholar

[5] P. Kisielewski, L. Antal, Transient currents in turbogenerator for the sudden short circuit, Prace Naukowe Instytutu Maszyn, Napędόw i Pomiarόw Elektrycznych Politechniki Wroclawskiej 63 (2009) 11.

Google Scholar

[6] M. Tari, K. Yoshida, S. Sekito, R. Brütsch, J. Allison, A. Lutz, HTC Insulation technology drives rapid progress of indirect-cooled turbo generator unit capacity, IEEE PES Summer Meeting, Vancouver, Canada (July 2001) 6.

DOI: 10.1109/pess.2001.970285

Google Scholar

[7] O. Bíró, K. Preis, On the use of the magnetic vector potential in the finite element analysis of three-dimensional eddy currents, IEEE Trans. Magn. 25 (1989) 3145-3159.

DOI: 10.1109/20.34388

Google Scholar

[8] J.P. Holman, Heat Transfer, McGraw-Hill, New York, (2002).

Google Scholar

[9] E.G. Kasharsky, N.B. Chemodanova, A.S. Shapiro, Losses and Heating in Massive Rotors of Synchronous Machines, Nauka, Leningrad, 1968 (in Russian).

Google Scholar

[10] M.G. Pantelyat, Coupled electromagnetic, thermal and elastic-plastic simulation of multi-impulse inductive heating, International Journal of Applied Electromagnetics and Mechanics 9 (1998) 11-24.

DOI: 10.3233/jaem-1998-088

Google Scholar