A Modified Limited Memory BFGS Method for Non-Convex Minimization

Article Preview

Abstract:

In this paper, a modified limited memory BFGS method for solving large-scale unconstrained optimization problems is proposed. A remarkable feature of the proposed method is that it possesses a global convergence property even without convexity assumption on the objective function. The implementations of the algorithm on CUTE test problems are reported, which suggest that a slight improvement has been achieved.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

367-371

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Byrd, R.H., Nocedal, J. A tool for the analysis of quasi-Newton methods with application to unconstrained minimization. SIAM J. Numer. Anal., 26(3): 727–739 (1989).

DOI: 10.1137/0726042

Google Scholar

[2] Byrd, R.H., Nocedal, J., Yuan, Y. Global convergence of a class of quasi-Newton methods on convex problems. SIAM J. Numer. Anal., 24(4): 1171–1189 (1987).

DOI: 10.1137/0724077

Google Scholar

[3] Powell, M.J.D. Some global convergence properties of a variable metric algorithm for minimization without exact line searches-nonlinear Programming, Vol. 4, SIAM-AMS Proceedings. SIAM, Philadelpha, PA, (1976).

Google Scholar

[4] Dai, Y.H. Convergence properties of the BFGS algorithm. SIAM J. Optim., 13(2): 693–701 (2002).

DOI: 10.1137/s1052623401383455

Google Scholar

[5] Mascarenhas, W.F. The BFGS method with exact line searchs fails for non-convex objective functions. Math. Program., 99(1): 49–61 (2004).

DOI: 10.1007/s10107-003-0421-7

Google Scholar

[6] Li, D.H., Fukushima, M. A modified BFGS method and its global convergence in nonconvex minimization.J. Comput. Appl. Math., 129(1): 15–35 (2001).

DOI: 10.1016/s0377-0427(00)00540-9

Google Scholar

[7] Li, D.H., Fukushima, M. On the global convergence of the BFGS methods for nonconvex unconstrained optimization problems. SIAM J. Optim., 11(4): 1054–164 (2001).

DOI: 10.1137/s1052623499354242

Google Scholar

[8] Nocedal, J. Updating quasi-Newton matrices with limited storage. Math. Comput., 35(151): 773–782(1980).

DOI: 10.1090/s0025-5718-1980-0572855-7

Google Scholar

[9] Liu, D., Nocedal, J. On the limited memory BFGS method for large-scale optimization. Math. Program., 45(1–3): 503–528 (1989).

DOI: 10.1007/bf01589116

Google Scholar

[10] Conn, A.R., Gould, N.I.M., Toint, Ph.L. CUTE: constrained and unconstrained testing environment. ACM Trans. Math. Softw., 21(1): 123–160 (1995).

DOI: 10.1145/200979.201043

Google Scholar