[1]
David L Applegate, Robert E Bixby, Vasek Chvatal, and William J Cook. The traveling salesman problem: a computational study. Princeton University Press, (2011).
DOI: 10.1145/1556154.1556162
Google Scholar
[2]
David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Finding cuts in the tsp (a preliminary report). Certer for Discrete Mathematics & Theoretical Computer Science, (1995).
Google Scholar
[3]
Adrian Dumitrescu. The traveling salesman problem for lines and rays in the plane. Discrete Mathematics, Algorithms and Applications, 4(04), (2012).
DOI: 10.1142/s1793830912500449
Google Scholar
[4]
Sing Liew. Introducing convex layers to the traveling salesman problem. arXiv preprint arXiv: 1204. 2348, (2012).
Google Scholar
[5]
P. Jaillet. Probabilistic Traveling Salesman Problems. PhD thesis, Massachusetts Institute of Technology, (1985).
Google Scholar
[6]
Dimitris J Bertsimas and David Simchi-Levi. A new generation of vehicle routing research: robust algorithms, addressing uncertainty. Operations Research, 44(2): 286–304, (1996).
DOI: 10.1287/opre.44.2.286
Google Scholar
[7]
E. Kao. A preference order dynamic program for a stochastic travelling salesman problem. Operations Research, 26: 1033–1045, (1978).
DOI: 10.1287/opre.26.6.1033
Google Scholar
[8]
Eleni Hadjiconstantinou and Daron Roberts. Routing under uncertainty: an application in the scheduling of field service engineers. The vehicle routing problem, pages 331–352, (2002).
DOI: 10.1137/1.9780898718515.ch13
Google Scholar
[9]
Luis Paquete and Thomas Stützle. A two-phase local search for the biobjective traveling salesman problem. In Evolutionary Multi-Criterion Optimization, pages 479–493. Springer, (2003).
DOI: 10.1007/3-540-36970-8_34
Google Scholar
[10]
Eric Angel, Evripidis Bampis, and Laurent Gourvès. Approximating the pareto curve with local search for the bicriteria tsp (1, 2) problem. Theoretical Computer Science, 310(1): 135–146, (2004).
DOI: 10.1016/s0304-3975(03)00376-1
Google Scholar