[1]
XS Gao, ZY Huang. Efficient Characteristic Set Algorithms for Equation Solving in Finite Fields and Application in Analysis of Stream Ciphers[J]. IACR Cryptology ePrint Archive, 2009, 2009: 637.
Google Scholar
[2]
PWang. Parallel polynomial operations on SMPs: An overview. Journal of Symbolic Computation, 2001, 11(1): 377-396.
Google Scholar
[3]
Rayes M, PWang. Parallel GCD for sparse multivariate polynomials on shared memory multiple processors. In: Proc. of thePASCO'96. Washington: IEEE Press, 1996. 326-335.
Google Scholar
[4]
Ajwa I, PWang. Applying parallel/distributed computing to advanced algebraic computations. In: Proc. of the 1997 IEEE NationalAerospace and Electronics Conf. Washington: IEEE Press, 1997. 156-164.
DOI: 10.1109/naecon.1997.617775
Google Scholar
[5]
DM Wang. On the Parallelization of Characteristic - Set - BasedAlgorithms[C]. Proceedings of the First International ACPC Conferencem, LNCS 591, Springer -Verlag, Berlin Heidelberg, 1991: 338 - 349.
Google Scholar
[6]
YWWu, GWYang, Lin DD. On the parallel computation for characteristic set method[J]. Journal of Electronics, 2004, 18(3): 383-388, In Chinese.
Google Scholar
[7]
YWWu, GWYang, HYang. A Distributed Computing Model for Wu's Method[J]. Journal of Software, 2005, 16(3): 384-391, In Chinese.
Google Scholar
[8]
Gregory V. Bard, Algebraic Cryptanalysis, Springer, (2009).
Google Scholar
[9]
Courtois N T, Meier W. Algebraic attacks on stream ciphers with linear feedback[A]. Biham E. Advances in Cryptology- Eurocrypt 2003[C]. Berlin: IACR2003, 2003. 345-359.
DOI: 10.1007/3-540-39200-9_21
Google Scholar
[10]
Ritt, J.F. Differential algebra, Amer. Math. Soc. Colloquium(1950).
Google Scholar
[11]
W T Wu. A Mechanization Method of Geometry and Its Applications [J]. I . Distances, Areas, and Volumes, J. Sys. Sci. & Math. Scis., 6 , 1986: 204 - 216.
Google Scholar