A Novel RFID-Based Thermal Convection Inclinometer on Flexible Substrate without Grooved Structure

Article Preview

Abstract:

This research proposes a novel wireless RFID-based thermal convection type inclinometer by using non-floating structure without a cavity in the substrate. Four new ideas are presented. The first one is to make the device on a flexible substrate, thus it can save more energy than the traditional silicon. The second one is to integrate both an inclinometer and a wireless RFID antenna on the same substrate, such that it is a wireless device and very convenient for usage. The third idea is to fill xenon gas in the chamber with hemi-spherical or hemi-cylindrical shape instead of the previous one with carbon dioxide and rectangular shape. Because the xenon gas would not produce oxidization effect to the heater, so it would be more reliable. The fourth idea is to use non-floating structure instead of the floating one. The results by using floating structure with xenon and CO2 gases are studied the first; but the sensitivity performances are not good. Note that the sensitivities for the proposed non-floating structure by using hemi-spherical chamber filled with xenon and CO2 gases are better, and the one of the former is better than the latter by 70 %. On the other hand, the response speed (step-input of tilted angle) by using hemi-cylindrical chamber with xenon gas is the quickest, the average response time is 545μs, while the rectangular chamber filled with CO2 is the slowest, and the average response time is 848μs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

7-14

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. W. Lucky: Bell Syst. Tech. J. Vol. 44 (1965), p.547.

Google Scholar

[2] S. P. Bingulac: in Proc. 4th Annu. Allerton Conf. Circuits and Systems Theory, (1994), p.8.

Google Scholar

[3] G. R. Faulhaber, in: IEEE Int. Conf. Communications, (1995), p.3.

Google Scholar

[4] W. D. Doyle: in Proc. INTERMAG Conf., (1987), p.2. 2-1.

Google Scholar

[5] S. Billata, H. Glosch, M Kunze, F. Hedrich, J. Frech, J. Auber, H. Sandmaier, W. Wimmer and W. Lang: Sensors and Actuators A: Physical Vol. 97-98 (2002), p.125.

DOI: 10.1016/s0924-4247(01)00824-x

Google Scholar

[6] S. Billat, H. Glosch, M. Kunze, F. Hedrich, J. Frech, J. Auber, H. Sandmaier, W. Wimmer and W. Lang,: in Proc. MEMS, Interlaken, Switzerland (2001), p.159.

DOI: 10.1109/memsys.2001.906504

Google Scholar

[7] M. A. Adams, P. Dolan, C. Marx and W. C. Hutton: Clinical Biomechanics Vol. 1 (1986), p.130.

Google Scholar

[8] Frazão, R. Falate, J. L. Fabris, J. L. Santos, L. A. Ferreira and F. M. Araújo: Optics Letters Vol. 31 (2006), p.2960.

Google Scholar

[9] A. G. Butler, D. G. Green and R. E. Nagle, U.S. patent 4 912 662. (1990).

Google Scholar

[10] Ascia, S. Baglio and N. Savalli: Instrumentation and Measurement Vol. 56 (2007), p.1114.

Google Scholar

[11] R. R. Baxter, S. Ohno, S. D. Hawley and D. M. Wilson: in Proc. 12th International Conference on, 2003, Transducers, Solid-State Sensors, Actuators and Microsystems Vol. 2 (2003), p.1279.

DOI: 10.1109/sensor.2003.1216921

Google Scholar

[12] A. M. Leung, J. Jones, E. Czyzewska, J. Chen and B. Woods: in Proc. MEMS, Anaheim, CA (1998), p.627.

Google Scholar

[13] V. Milanovic, E. Bowen, Nim Tea, J. Suehle, B. Payne, M. Zaghloul and M. Gaitan: in Proc. MEMS, Anaheim CA, (1998), p.487.

Google Scholar

[14] J. van Honschoten, J. van Baar, H. E. de Bree, T. Lammerink, G. Krijnen and J. M. Elwenspoek: Micromech. Microeng. Vol. 10 (2000), p.250.

DOI: 10.1088/0960-1317/10/2/324

Google Scholar

[15] Y. Y. Cai, A. Dribinsky, G. J. O'Brien, G. P. Pucci, M. Varghese, U.S. Patent 7, 862, 229 B2. (2011).

Google Scholar

[16] B. Alain, R. Alain, V. Bernard, G. Alain: European Patent E. Patent 1, 550, 874 B1. (2010).

Google Scholar

[17] G. Daia, M. Li, X. P. He, L. M. Du, B. B. Shao and W. Su: Sensors and Actuators A: Physical Vol. 172 (2011), p.369.

Google Scholar

[18] A. H. Ma and A. M. Leung: IEEE Sensors (2008) p.1492.

Google Scholar

[19] J. Courteaud, P. Combette, N. Crespy, G. Cathebras and A. Giani: Sensors and Actuators A: Physical Vol. 141 (2008), p.307.

DOI: 10.1016/j.sna.2007.09.008

Google Scholar

[20] S. Petra, E. F. Bernhard, F. Knut, S. Dagmar and H. Jan: Diagnostic Imaging and Testing, Vol. 21 (1996), p.1332.

Google Scholar

[21] S. L. Cornbleet and N. B. Woolsey: Physical Therapy, Vol. 76 (1996), p.850.

Google Scholar

[22] L. A. Rochaa, C. S. Silva, M. F. Cerqueira, J. F. Ribeiro, L. M. Goncalves, A. J. Pontes and J. C. Viana: Procedia Engineering, Vol. 25 (2011), p.607.

DOI: 10.1016/j.proeng.2011.12.151

Google Scholar