Tunnel Excavation Cross-Section Optimization by FEM under Feng-Tian Road in Chongqing

Article Preview

Abstract:

With the development of transportation, subway is more and more important to every city, but the security of underground railway track faces with serious challenges. Tunnel excavation cross-section types have rectangle, roundness, arch, composite one and so on. In the tunnel excavation under Feng-tian Road in Chongqing, we chose three cross-section types for obtaining optimal scheme by finite element method (FEM). The efficiency and reliability of the optimized tunnel excavation cross-section were demonstrated by simulation results by FEM software Abaqus, and the tunnel excavation engineering under Feng-tian Road in Chongqing. Hope that this work can provide a reference to other tunnel excavation engineering.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

932-935

Citation:

Online since:

February 2014

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mokni N., Olivella S., Carrera J. Surface movements in a rock massif induced by drainage associated to tunnel excavation. International Journal for Numerical and Analytical Methods in Geomechanics. 2013(9), Vol. 37: P1162-1188.

DOI: 10.1002/nag.2082

Google Scholar

[2] Berthoz N., Branque D., Wong H. Stress measurement in partially saturated soils and its application to physical modeling of tunnel excavation. Canadian Geotechnical Journal. 2013(10), Vol. 50: P1077-1087.

DOI: 10.1139/cgj-2013-0154

Google Scholar

[3] Klar A., Osman S., Bolton M. 2D and 3D upper bound solutions for tunnel excavation using elastic, flow fields. International Journal for Numerical and Analytical Methods in Geomechanics. 2010(12), Vol. 31: P1367-1374.

DOI: 10.1002/nag.597

Google Scholar

[4] Nguyen T., Datcheva M., Nestorovic T. Identification of a fault zone ahead of the tunnel excavation face using the extended Kalman filter. Mechanics Research Communications. 2013, Vol. 53: P47-52.

DOI: 10.1016/j.mechrescom.2013.08.003

Google Scholar

[5] Chiocchini U., Castaldi F. The impact of groundwater on the excavation of tunnels in two different hydrogeological settings in central Italy. Hydrogeology Journal. 2011(3), Vol. 19: P651-669.

DOI: 10.1007/s10040-010-0702-1

Google Scholar

[6] Bilotta E., Russo G. Use of a Line of Piles to Prevent Damages Induced by Tunnel Excavation. Journal of Geotechnical and Geoenvironmental Engineering. 2011(3), Vol. 137: P254-262.

DOI: 10.1061/(asce)gt.1943-5606.0000426

Google Scholar

[7] Tiger Sun, Xianghe Peng, Shuping Jiao, Changxing Xu, Jingzhi Li. Simulation of Particle Dynamics of Nano-Magnetorheological Materials in External Magnetic Fields. Journal of Computational and Theoretical Nanoscience. 2014(6), Vol. 11: P656-661.

DOI: 10.1166/jctn.2014.3528

Google Scholar

[8] Ran L., Yi T. H., Ye X. W. Long-Term Deformation Monitoring of Metro-Tunnel Airshaft Excavation during Construction Stage. International Journal of Distributed Sensor Networks. 2012, Article ID: 972893.

DOI: 10.1155/2012/972893

Google Scholar

[9] Hu Sun, Xianghe Peng, Kaiyuan Guo, Jingzhi Li, Jin Huang. Magnetorheological Materials Theory System and Experimental Investigation. Materials Focus. 2013(4), Vol. 2: P283-287.

DOI: 10.1166/mat.2013.1090

Google Scholar

[10] Wang F., Zhang D. M., Zhu H. H. Impact of Overhead Excavation on an Existing Shield Tunnel: Field Monitoring and a Full 3D Finite Element Analysis. CMC-Computers Materials & Continua. 2013(1), Vol. 34: P63-81.

Google Scholar

[11] Sharifzadeh M., Kolivand F., Ghorbani M. Design of sequential excavation method for large span urban tunnels in soft ground - Niayesh tunnel. Tunnelling and Underground Space Technology. 2013, Vol. 35: P178-188.

DOI: 10.1016/j.tust.2013.01.002

Google Scholar

[12] Tiger Sun, Xianghe Peng, Jingzhi Li, Chao Feng. Testing Device and Experimental Investigation to Influencing Factors of Magnetorheological Fluid. International Journal of Applied Electromagnetics and Mechanics. 2013(3), Vol. 43: P283-292.

DOI: 10.3233/jae-131700

Google Scholar

[13] Ritter S., Einstein H. H., Galler R. Planning the handling of tunnel excavation material - A process of decision making under uncertainty. Tunnelling and Underground Space Technology. 2013, Vol. 33: P193-201.

DOI: 10.1016/j.tust.2012.08.009

Google Scholar

[14] Tiger Sun, Shuping Jiao, Xianghe Peng, Changxing Xu, Jingzhi Li. Mechanics Modeling upon Nano-MRM for Treatment of Intracranial Aneurysm. Advanced Materials Research. 2013, Vol. 643: P135-138.

DOI: 10.4028/www.scientific.net/amr.643.135

Google Scholar

[15] Weng M. C., Tsai L. S., Liao C. Y. Numerical modeling of tunnel excavation in weak sandstone using a time-dependent anisotropic degradation model. Tunnelling and Underground Space Technology. 2010(4), Vol. 25: P397-406.

DOI: 10.1016/j.tust.2010.02.004

Google Scholar

[16] Hu Sun, Xiang-he Peng. Magnetorheological Materials Theory United in Energy. Applied Mechanics and Materials. 2012, Vol. 157-158: P33-36.

DOI: 10.4028/www.scientific.net/amm.157-158.33

Google Scholar