[1]
S. Raghavan and J. K. Hedrick, Observer design for a class of nonlinear systems , International Journal of Control. Vol. 59 (1994), p.515.
Google Scholar
[2]
G. Bastin and M. Gevers, Stable adaptive observers for nonlinear time-varying systems, IEEE Transactions on Automatic Control. Vol. 33 (1988), p.650.
DOI: 10.1109/9.1273
Google Scholar
[3]
S. Xu, J. Lu, S. Zhou and C. Yang, Design of observers for a class of discrete-time uncertain nonlinear systems with timedelay , Journal of The Franklin Institute. Vol. 341 (2004) , p.295.
DOI: 10.1016/j.jfranklin.2003.12.012
Google Scholar
[4]
Y. Liu, Robust adaptive observer for nonlinear systems with unmodeled dynamics , Automaitca. Vol. 45 (2009), p.1891.
DOI: 10.1016/j.automatica.2009.04.002
Google Scholar
[5]
R. Rajamani, Observers for Lipschitz nonlinear systems, IEEE Transactions on Automatic Control, Vol. 43 (1998), p.397.
DOI: 10.1109/9.661604
Google Scholar
[6]
K. Ma and P. Ma, Novel observer design method for Lipschitz nonlinear systems, Control Theory & Applications. Vol. 20(2003), p.644.
Google Scholar
[7]
F. Zhu and Z. Han, A note on observer for Lipschitz nonlinear systems, IEEE Transactions on Automatic Control. Vol. 47 ( 2002), p.1751.
Google Scholar
[8]
G. Kreisselmeier and R. Engel, Nonlinear observers for autonomous Lipschitz continuous systems, IEEE Transactions on Automatic Control. Vol. 48 (2003), p.451.
DOI: 10.1109/tac.2002.808468
Google Scholar
[9]
M. Arcak and P. Kokotović, Nonlinear observers: a circle criterion design and robustness analysis, Automatica. Vol. 37( 2001), p. (1923).
DOI: 10.1016/s0005-1098(01)00160-1
Google Scholar
[10]
Z. Jiang and L. Praly, Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties, Automatica. Vol. 34 (1998), p.825.
DOI: 10.1016/s0005-1098(98)00018-1
Google Scholar
[11]
M. Hou and A. Pugh, Observer with linear error dynamics for nonlinear multioutput systems, Systems & Control Letters. Vol. 37(1999), p.1.
DOI: 10.1016/s0167-6911(98)00105-4
Google Scholar
[12]
T. Ishihara and H. Guo, Design of Optimal Output Disturbance Cancellation Controllers for Non-Minimum Phase Plants Via Loop Transfer Recovery, SICE Aunual Conference (2010).
DOI: 10.1109/ascc.2013.6606143
Google Scholar
[13]
H. Grip and A. Saberi , Observer design in the presence of periodic output disturbances by mixing of past and present output data, Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control.
DOI: 10.1109/cdc.2009.5399707
Google Scholar
[14]
C. Ahoky, G. Sall, and J. C. Vivalda, Observers for Lipschitz nonlinear systems, Int J Control. Vol. 75(2002), p.204.
Google Scholar
[15]
F. Zhang, The Schur Complement and Its Applications, Springer, (2005).
Google Scholar
[16]
Q. Zhang and G. Besancon, An adaptive Observer for sensor fault estimation in a class of uniformly observable nonlinear systems, International Journal of Modelling, Identification and Control. Vol. 4 (2008), p.37.
DOI: 10.1504/ijmic.2008.020998
Google Scholar
[17]
J. Alvarez, Nonlinear state estimation with robust convergence, Journal of Process Control. Vol. 10 (2000), p.59.
Google Scholar