Observer Design for Lipschitz Nonlinear Systems with Output Uncertainty

Article Preview

Abstract:

This paper presents an observer design for Lipschitz nonlinear systems with output uncertainty. By means of Lyapunov method as well as linear matrix inequality (LMI), the observer gain matrix is determined and a sufficient condition ensuring the asymptotic stability of the observer is proposed. Simulation results demonstrate the robustness of the proposed observer for output uncertainty.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

277-280

Citation:

Online since:

February 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Raghavan and J. K. Hedrick, Observer design for a class of nonlinear systems , International Journal of Control. Vol. 59 (1994), p.515.

Google Scholar

[2] G. Bastin and M. Gevers, Stable adaptive observers for nonlinear time-varying systems, IEEE Transactions on Automatic Control. Vol. 33 (1988), p.650.

DOI: 10.1109/9.1273

Google Scholar

[3] S. Xu, J. Lu, S. Zhou and C. Yang, Design of observers for a class of discrete-time uncertain nonlinear systems with timedelay , Journal of The Franklin Institute. Vol. 341 (2004) , p.295.

DOI: 10.1016/j.jfranklin.2003.12.012

Google Scholar

[4] Y. Liu, Robust adaptive observer for nonlinear systems with unmodeled dynamics , Automaitca. Vol. 45 (2009), p.1891.

DOI: 10.1016/j.automatica.2009.04.002

Google Scholar

[5] R. Rajamani, Observers for Lipschitz nonlinear systems, IEEE Transactions on Automatic Control, Vol. 43 (1998), p.397.

DOI: 10.1109/9.661604

Google Scholar

[6] K. Ma and P. Ma, Novel observer design method for Lipschitz nonlinear systems, Control Theory & Applications. Vol. 20(2003), p.644.

Google Scholar

[7] F. Zhu and Z. Han, A note on observer for Lipschitz nonlinear systems, IEEE Transactions on Automatic Control. Vol. 47 ( 2002), p.1751.

Google Scholar

[8] G. Kreisselmeier and R. Engel, Nonlinear observers for autonomous Lipschitz continuous systems, IEEE Transactions on Automatic Control. Vol. 48 (2003), p.451.

DOI: 10.1109/tac.2002.808468

Google Scholar

[9] M. Arcak and P. Kokotović, Nonlinear observers: a circle criterion design and robustness analysis, Automatica. Vol. 37( 2001), p. (1923).

DOI: 10.1016/s0005-1098(01)00160-1

Google Scholar

[10] Z. Jiang and L. Praly, Design of robust adaptive controllers for nonlinear systems with dynamic uncertainties, Automatica. Vol. 34 (1998), p.825.

DOI: 10.1016/s0005-1098(98)00018-1

Google Scholar

[11] M. Hou and A. Pugh, Observer with linear error dynamics for nonlinear multioutput systems, Systems & Control Letters. Vol. 37(1999), p.1.

DOI: 10.1016/s0167-6911(98)00105-4

Google Scholar

[12] T. Ishihara and H. Guo, Design of Optimal Output Disturbance Cancellation Controllers for Non-Minimum Phase Plants Via Loop Transfer Recovery, SICE Aunual Conference (2010).

DOI: 10.1109/ascc.2013.6606143

Google Scholar

[13] H. Grip and A. Saberi , Observer design in the presence of periodic output disturbances by mixing of past and present output data, Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control.

DOI: 10.1109/cdc.2009.5399707

Google Scholar

[14] C. Ahoky, G. Sall, and J. C. Vivalda, Observers for Lipschitz nonlinear systems, Int J Control. Vol. 75(2002), p.204.

Google Scholar

[15] F. Zhang, The Schur Complement and Its Applications, Springer, (2005).

Google Scholar

[16] Q. Zhang and G. Besancon, An adaptive Observer for sensor fault estimation in a class of uniformly observable nonlinear systems, International Journal of Modelling, Identification and Control. Vol. 4 (2008), p.37.

DOI: 10.1504/ijmic.2008.020998

Google Scholar

[17] J. Alvarez, Nonlinear state estimation with robust convergence, Journal of Process Control. Vol. 10 (2000), p.59.

Google Scholar