[1]
L. Xu, Develop of Magnetic Bearings for High Temperature Suspension, Seventh International Symp. on Magnetic Bearings, ETH Zurich, (2000).
Google Scholar
[2]
A. J. Provenza and G. T. Montague, High Temperature Characterization of a Radial Magnetic Bearing for Turbomachinery, ASME/IGTI Turbo Expo, Atlanta, Georgia USA, (2003).
DOI: 10.1115/gt2003-38870
Google Scholar
[3]
A. Palazzolo, et al., High Temperature, Permanent Magnet Biased, Fault Tolerant, Homopolar Magnetic Bearing Development, ASME Turbo Expo, Berlin, Germany, (2008).
DOI: 10.1115/gt2008-50917
Google Scholar
[4]
G. Schweitzer and E. H. Maslen, Magnetic Bearings. New York: Springer, (2009).
Google Scholar
[5]
H. Habermann and G. Liard, An active magnetic bearing system, Tribology International, vol. 13, pp.85-89, (1980).
DOI: 10.1016/0301-679x(80)90021-3
Google Scholar
[6]
R. T. Fingers and C. S. Rubertus, Application of high temperature magnetic materials, Magnetics, IEEE Transactions on, vol. 36, pp.3373-3375, (2000).
DOI: 10.1109/20.908805
Google Scholar
[7]
M. Dussaux, The Industrial Applications of the Active Magnetic Bearing Technology, in Proc. of the 2nd. Int. Symp. on Magnetic Bearings, Tokyo Japan, July 1990, p.33~38.
Google Scholar
[8]
M. Brunet, Practical Applications of the Active Magnetic Bearings to the Industrial World, in Proc. of 1st Int. Symp on Magnetic Bearings, ETH Zurich, Switzerland, 1988, p.225~244.
DOI: 10.1007/978-3-642-51724-2_22
Google Scholar
[9]
Luc Burdet, et al., Thermal Model for a High Temperature Active Magnetic Bearing, Ninth International Symposium on Magnetic Bearings, Lexington, Kentucky, USA, (2004).
Google Scholar
[10]
K. ME, et al., Effect of sinusoidal base motion on a magnetic bearing, Proc IEEE Int Conf Control Appl, (2000).
Google Scholar
[11]
K. P. Cole MOT and B. CR., Control and non-linear compensation of a rotor/magnetic bearing system subject to base motion, 6th Internation symposium on magnetic bearings, Cambridge, MA, (1998).
Google Scholar
[12]
Y. Chen and C. Zhu, Active vibration control based on linear matrix inequality for rotor system under seismic excitation, Journal of Sound and Vibration, vol. 314, pp.53-69, (2008).
DOI: 10.1016/j.jsv.2008.01.005
Google Scholar
[13]
K. Min Sig and Y. Woo Hyun, Acceleration feedforward control in active magnetic bearing system subject to base motion by filtered-X LMS algorithm, Control Systems Technology, IEEE Transactions on, vol. 14, pp.134-140, (2006).
DOI: 10.1109/tcst.2005.847337
Google Scholar
[14]
S. X and M. CH., Robust disturbance rejection for improved dynamic stiffness of magnetic suspension stage, IEEE/ASME Trans Mech, vol. 7, pp.89-95, (2002).
DOI: 10.1109/tmech.2002.802719
Google Scholar
[15]
M. S. Kang, et al., Sliding mode control for an active magnetic bearing system subject to base motion, Mechatronics, vol. 20, pp.171-178, (2010).
DOI: 10.1016/j.mechatronics.2009.09.010
Google Scholar
[16]
L. JH, et al., Integral sliding-mode control of a magnetically suspended balance beam: analysis, simulation and experiment, IEEE/ASME Trans Mech, vol. 6, pp.38-46, (2001).
DOI: 10.1109/3516.951371
Google Scholar
[17]
Z. Changsheng and C. Yongjun, Vibration Characteristics of Aeroengine's Rotor System During Maneuvering Flight, ACTA AERONAUTICA ET ASTRONAUTICA SINICA, vol. 27, pp.835-841, 2006. (in Chinese).
Google Scholar