Simulation Research of Deuterium and Tritium Ions Motion in Accelerating Electric Field for Neutron Tube

Article Preview

Abstract:

The model of neutron tube accelerating system was established to research what the effect of neutron tube accelerating gap, voltage and size of accelerating electrode on trajectory of deuterium tritium ion with finite element simulation technology. Some useful conclusions obtained from the simulation results provide the basis for optimizing the neutron tube structure and parameter, which can make neutron yields of 50-mm-diameter tube in the order of 109 n/s and the stability is not more than 2%.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

62-67

Citation:

Online since:

April 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.L. Chichester, J. Brainard , P.R. Schwoebel , K.L. Hertz , C. Holland. Nucl. Instr. and Meth. B 261 (2007) 835–838.

Google Scholar

[2] J.M. Verbeke, K.N. Leung, J. Vujic. Appl. Radiat. Isot. 53 (2000) 801-809.

Google Scholar

[3] F. Gicquel, S.K. Hahto, M. King, T. -P. Lou, K. -N. Leung. Appl. Radiat. Isot. 63 (2005) 757–763.

Google Scholar

[4] K.X. Xiao, S. Sun, X.H. Tan. Well Logging Technology. (in Chinese). 2009, 33(5): 493—496.

Google Scholar

[5] D.S. Gu,  L.M. Liu, W.S. Li . Journal of Vacuum Science and Technology 2007, 6(27): 76-78.

Google Scholar

[6] A.M. Reda. RADIAT MEAS 46 (2011) 1187-1193.

Google Scholar

[7] G. Li, Z.S. Zhang, C. Qian, L.M. Liu. Nucl. Instr. and Meth. B 290 (2012) 64–68.

Google Scholar

[8] Richard T. Kouzes, Edward R. Siciliano, James H. Ely, Paul E. Keller, Ronald J. McConn. Nucl. Instr. and Meth. A 584 (2008) 383–400.

Google Scholar

[9] A.X. Chen, A.J. Antolak, K. -N. Leung. Nucl. Instr. and Meth. A 684 (2012) 52–56.

Google Scholar

[10] Verbeke, Jerome M. Lawrence Berkeley National Laboratory. 2000.

Google Scholar

[11] Wu Ying, Paul Hurley, Qing Ji, Joe Kwan1, Ka-Ngo Leung. Lawrence Berkeley National Laboratory. (2010).

Google Scholar

[12] D.L. Chichester, M. Lemchak, J.D. Simpson. Nucl. Instr. and Meth. B 241 (2005) 753–758.

Google Scholar

[13] Miklos Gyimesi, Vladimir Zhulin, Dale Ostergaard. Nucl. Instr. and Meth. A 427 (1999) 408-411.

Google Scholar

[14] Stefania Farinon. Cryogenics 47 (2007) 577-582.

Google Scholar

[15] A. Ghorbanpour Arani, R. Kolahchi, A.A. Mosallaie Barzoki, A. Loghman. APPL MATH MODEL. 36 (2012) 139-157.

DOI: 10.1016/j.apm.2011.05.031

Google Scholar

[16] Dong Keun Oh, Sunil Pak, Hogun Jhang. FUSION ENG DES 87 (2012) 47– 53.

Google Scholar

[17] Z.X. Xie , S. Qiao. Journal of Northeast Normal University(Natural Science Edition(in chinese). 2012, 44(1): 88-92.

Google Scholar

[18] D.Y. Jin, T.Z. Jin, Y.Q. Su. Acta Scientiarum Naturalium Universitatis Jilinensis. (in Chinese). 411 ( 1995).

Google Scholar

[19] S.Z. Luo, B.F. Yang, X.G. Long, Atomic Energy Science and Technology. (in Chinese). 36(4), (2002).

Google Scholar

[20] J.Q. Lv, The Optics Changed Particle Beam, Higher Education Press. (in Chinese), BeiJing, (2004).

Google Scholar